skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biodegradation of Functionalized Nanocellulose
Nanocellulose has attracted widespread interest for applications in materials science and biomedical engineering due to its natural abundance, desirable physicochemical properties, and high intrinsic mineralizability (i.e., complete biodegradability). A common strategy to increase dispersibility in polymer matrices is to modify the hydroxyl groups on nanocellulose through covalent functionalization, but such modification strategies may affect the desirable biodegradation properties exhibited by pristine nanocellulose. In this study, cellulose nanofibrils (CNFs) functionalized with a range of esters, carboxylic acids, or ethers exhibited decreased rates and extents of mineralization by anaerobic and aerobic microbial communities compared to unmodified CNFs, with etherified CNFs exhibiting the highest level of recalcitrance. The decreased biodegradability of functionalized CNFs depended primarily on the degree of substitution at the surface of the material rather than within the bulk. This dependence on surface chemistry was attributed not only to the large surface area-to-volume ratio of nanocellulose but also to the prerequisite surface interaction by microorganisms necessary to achieve biodegradation. Results from this study highlight the need to quantify the type and coverage of surface substituents in order to anticipate their effects on the environmental persistence of functionalized nanocellulose.  more » « less
Award ID(s):
2001611
PAR ID:
10279401
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
ISSN:
0013-936X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellulose nanofibrils (CNFs) produced through processes involving oxidation (e.g. TEMPO oxidation) present reactive groups that allow for straightforward modification in aqueous suspension. CNFs fabricated through mechanical refinement alone can be challenging to modify for subsequent reactions due to only having hydroxyl groups present on the surface. To address these issues, CNFs with only hydroxyl groups present were functionalized with norbornene groups in their native aqueous suspension to achieve up to 10% functionalization per anhydroglucose unit. Since quantification of surface functionalizationof CNFs is challenging through most methods, a degradation and subsequent nuclear magnetic resonance analysis method was developed to quantify norbornene functionalization. The norbornene functionalized CNFs (nCNFs) were crosslinked through UV and thermally initiated thiol-eneclick reactions to create robust CNF hydrogels. By varying the reaction conditions, hydrogels made from nCNFs and a dithiol cross-linker could achieve compression modulus values up to 25 kPa. The materials were stable in aqueous suspensions and the cross-linked hydrogels still exhibited shear thinning behavior with high recovery, which demonstrated that even though effective cross-links were formed, a complete network was not. Through this study, thiolnorbornene crosslinking of CNFs could create robust hydrogels and improve aqueous stability that could have applications in sustainable materials and biomaterials. 
    more » « less
  2. Abstract Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS 2 ) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS 2 layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS 2 /CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS 2 layers. Furthermore, VA-2D MoS 2 /CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS 2 /CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics. 
    more » « less
  3. Abstract Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four foam formulations prepared from combinations of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and kaolin-microfibrillated cellulose composite. All the foams were crosslinked with a polyamide-epichlorohydrin crosslinker (Polycup) to impart stability under wet conditions without additional functionalization. Foams containing 25 wt% kaolin exhibited excellent shape recovery promoted by a higher load of crosslinker (5 wt%), and superior compressive properties. The addition of CNC at 33.3 wt% and 50 wt% did not seem to enhance the properties of the foam and also reduced the specific surface area. A preliminary comparative study between the four tested formulations was conducted to assess the feasibility of the foam as an adsorbent of methylene blue dye. 
    more » « less
  4. null (Ed.)
    Rice husks are an agricultural residue of great annual production and have a high cellulose content. In this study, we have prepared highly charged carboxyl cellulose nanofibers (CNFs) from rice husks using the TEMPO-oxidation method and the extracted CNFs were evaluated as an adsorbent for the removal of lead( ii ) and lanthanum( iii ) (Pb( ii ) and La( iii )) ions from contaminated water. Three different forms of nanocellulose adsorbents were prepared: suspension, freeze-dried, and nanocomposite containing magnetic nanoparticles, where their adsorption performance was tested against the removal of the two chosen heavy metal ions. The maximum adsorption capacity of rice husk based CNFs was found to be the highest in the nanocellulose suspension, i.e. , 193.2 mg g −1 for Pb( ii ) and 100.7 mg g −1 for La( iii ). The separation of the used adsorbent in the suspension was further facilitated by the gelation of the CNFs and metal cations, where the resulting floc could be removed by gravity-driven filtration. The absorption mechanism of the investigated CNF system is mainly due to electrostatic interactions between negatively charged carboxylate groups and multivalent metal ions. It was found that 90% lanthanum content in the form of lanthanum oxychloride (determined by X-ray powder diffraction) could be obtained by incinerating the CNF/LaCl 3 gel. This study demonstrates a viable and sustainable solution to upcycle agricultural residues into remediation nanomaterials for the removal and recovery of toxic heavy metal ions from contaminated water. 
    more » « less
  5. Carbon nanofibers (CNFs) have wide applications in various high-tech areas. The demand for CNFs can exponentially increase due to the rapid development of advanced functional materials. Accordingly, a transformational progress is being made in synthesizing CNFs, especially functionalized CNFs. A dominant CNF synthesis pathway is catalytic chemical vapor deposition (CCVD). Therefore, the goal of this work is to review the most recent progress in CCVD synthesis of functional CNFs and to understand how the process conditions and catalysts, especially metal catalysts, affect the physical and chemical properties of the produced CNFs. 
    more » « less