skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
In this paper, we apply two fully-discrete local discontinuous Galerkin (LDG) methods to the compressible wormhole propagation. We will prove the stability and error estimates of the schemes. Traditional LDG methods use the diffusion term to control of convection term to obtain the stability for some linear equations. However, the variables in wormhole propagation are coupled together and the whole system is highly nonlinear. Therefore, it is extremely difficult to obtain the stability for fully-discrete LDG methods. To fix this gap, we introduce a new auxiliary variable including both the convection and diffusion terms. Moreover, we also construct a special time integration for the porosity, leading to physically relevant numerical approximations and controllable growth rate of the porosity. With a reasonable growth rate, it is possible to handle the time level mismatch in the first-order fully discrete scheme and obtain the stability of the scheme. For the whole system, we will prove that under weak temporal-spatial conditions, the optimal error estimates for the pressure, velocity, porosity and concentration under different norms can be obtained. Numerical experiments are also given to verify the theoretical results.  more » « less
Award ID(s):
1818467
PAR ID:
10279518
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
55
Issue:
3
ISSN:
0764-583X
Page Range / eLocation ID:
1103 to 1131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less
  2. Abstract In this paper, we develop a local discontinuous Galerkin (LDG) method to simulate the wave propagation in an electromagnetic concentrator. The concentrator model consists of a coupled system of four partial differential equations and one ordinary differential equation. Discrete stability and error estimate are proved for both semi‐discrete and full‐discrete LDG schemes. Numerical results are presented to justify the theoretical analysis and demonstrate the interesting wave concentration property by the electromagnetic concentrator. 
    more » « less
  3. Abstract A local discontinuous Galerkin (LDG) method for approximating large deformations of prestrained plates is introduced and tested on several insightful numerical examples in Bonito et al. (2022, LDG approximation of large deformations of prestrained plates. J. Comput. Phys., 448, 110719). This paper presents a numerical analysis of this LDG method, focusing on the free boundary case. The problem consists of minimizing a fourth-order bending energy subject to a nonlinear and nonconvex metric constraint. The energy is discretized using LDG and a discrete gradient flow is used for computing discrete minimizers. We first show $$\varGamma $$-convergence of the discrete energy to the continuous one. Then we prove that the discrete gradient flow decreases the energy at each step and computes discrete minimizers with control of the metric constraint defect. We also present a numerical scheme for initialization of the gradient flow and discuss the conditional stability of it. 
    more » « less
  4. null (Ed.)
    Abstract Optimal transport maps and plans between two absolutely continuous measures $$\mu$$ and $$\nu$$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $$\mu$$ or both $$\mu$$ and $$\nu$$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $$\mu$$ and $$\nu$$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $$O(h^{1/2})$$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different. 
    more » « less
  5. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less