skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-Embedding Network Nodes and Hierarchical Labels with Taxonomy Based Generative Adversarial Networks
Network embedding aims at transferring node proximity in networks into distributed vectors, which can be leveraged in various downstream applications. Recent research has shown that nodes in a network can often be organized in latent hierarchical structures, but without a particular underlying taxonomy, the learned node embedding is less useful nor interpretable. In this work, we aim to improve network embedding by modeling the conditional node proximity in networks indicated by node labels residing in real taxonomies. In the meantime, we also aim to model the hierarchical label proximity in the given taxonomies, which is too coarse by solely looking at the hierarchical topologies. To this end, we propose TAXOGAN to co-embed network nodes and hierarchical labels, through a hierarchical network generation process. Particularly, TAXOGAN models the child labels and network nodes of each parent label in an individual embedding space while learning to transfer network proximity among the spaces of hierarchical labels through stacked network generators and embedding encoders. To enable robust and efficient model inference, we further develop a hierarchical adversarial training process. Comprehensive experiments and case studies on four real-world datasets of networks with hierarchical labels demonstrate the utility of TAXOGAN in improving network embedding on traditional tasks of node classification and link prediction, as well as novel tasks like conditional proximity search and fine-grained taxonomy layout.  more » « less
Award ID(s):
1956151 1741317 1704532
PAR ID:
10279822
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICDM'20: IEEE 2020 Int. Conf. on Data Mining, Nov. 2020
Volume:
2020
Issue:
1
Page Range / eLocation ID:
721 to 730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhi (Ed.)
    Network representation learning aims at transferring node proximity in networks into distributed vectors, which can be leveraged in various downstream applications. Recent research has shown that nodes in a network can often be organized in latent hierarchical structures, but without a particular underlying taxonomy, the learned node embedding is less useful nor interpretable. In this work, we aim to improve network embedding by modeling the conditional node proximity in networks indicated by node labels residing in real taxonomies. In the meantime, we also aim to model the hierarchical label proximity in the given taxonomies, which is too coarse by solely looking at the hierarchical topologies. Comprehensive experiments and case studies demonstrate the utility of TAXOGAN. 
    more » « less
  2. While most network embedding techniques model the proximity between nodes in a network, recently there has been significant interest in structural embeddings that are based on node equivalences , a notion rooted in sociology: equivalences or positions are collections of nodes that have similar roles—i.e., similar functions, ties or interactions with nodes in other positions—irrespective of their distance or reachability in the network. Unlike the proximity-based methods that are rigorously evaluated in the literature, the evaluation of structural embeddings is less mature. It relies on small synthetic or real networks with labels that are not perfectly defined, and its connection to sociological equivalences has hitherto been vague and tenuous. With new node embedding methods being developed at a breakneck pace, proper evaluation, and systematic characterization of existing approaches will be essential to progress. To fill in this gap, we set out to understand what types of equivalences structural embeddings capture. We are the first to contribute rigorous intrinsic and extrinsic evaluation methodology for structural embeddings, along with carefully-designed, diverse datasets of varying sizes. We observe a number of different evaluation variables that can lead to different results (e.g., choice of similarity measure, classifier, and label definitions). We find that degree distributions within nodes’ local neighborhoods can lead to simple yet effective baselines in their own right and guide the future development of structural embedding. We hope that our findings can influence the design of further node embedding methods and also pave the way for more comprehensive and fair evaluation of structural embedding methods. 
    more » « less
  3. Abstract In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labelled data and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi‐year collaboration with biocurators and text‐mining researchers, we derive an iterative visual analytics and active learning (AL) strategy to address these challenges. We implement this strategy in a system called BI‐LAVA—Biocuration with Hierarchical Image Labelling through Active Learning and Visual Analytics. BI‐LAVA leverages a small set of image labels, a hierarchical set of image classifiers and AL to help model builders deal with incomplete ground‐truth labels, target a hierarchical taxonomy of image modalities and classify a large pool of unlabelled images. BI‐LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections and neighbourhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human–machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labelled and unlabelled collections. 
    more » « less
  4. Taxonomy construction is not only a fundamental task for semantic analysis of text corpora, but also an important step for applications such as information filtering, recommendation, and Web search. Existing pattern-based methods extract hypernym-hyponym term pairs and then organize these pairs into a taxonomy. However, by considering each term as an independent concept node, they overlook the topical proximity and the semantic correlations among terms. In this paper, we propose a method for constructing topic taxonomies, wherein every node represents a conceptual topic and is defined as a cluster of semantically coherent concept terms. Our method, TaxoGen, uses term embeddings and hierarchical clustering to construct a topic taxonomy in a recursive fashion. To ensure the quality of the recursive process, it consists of: (1) an adaptive spherical clustering module for allocating terms to proper levels when splitting a coarse topic into fine-grained ones; (2) a local embedding module for learning term embeddings that maintain strong discriminative power at different levels of the taxonomy. Our experiments on two real datasets demonstrate the effectiveness of TaxoGen compared with baseline methods. 
    more » « less
  5. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less