skip to main content


Title: The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate
Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or p CO 2 ) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N 2 O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes.  more » « less
Award ID(s):
1840868
NSF-PAR ID:
10280244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
476
Issue:
2237
ISSN:
1364-5021
Page Range / eLocation ID:
20190769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustained global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models. 
    more » « less
  2. Methane and carbon dioxide effluxes from aquatic systems in the Arctic will affect and likely amplify global change. As permafrost thaws in a warming world, more dissolved organic carbon (DOC) and greenhouse gases are produced and move from soils to surface waters where the DOC can be oxidized to CO 2 and also released to the atmosphere. Our main study objective is to measure the release of carbon to the atmosphere via effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep, dimictic, low-arctic lake in northern Alaska. By combining direct eddy covariance flux measurements with continuous gas pressure measurements in the lake surface waters, we quantified the k 600 piston velocity that controls gas flux across the air–water interface. Our measured k values for CH 4 and CO 2 were substantially above predictions from several models at low to moderate wind speeds, and only converged on model predictions at the highest wind speeds. We attribute this higher flux at low wind speeds to effects on water-side turbulence resulting from how the surrounding tundra vegetation and topography increase atmospheric turbulence considerably in this lake, above the level observed over large ocean surfaces. We combine this process-level understanding of gas exchange with the trends of a climate-relevant long-term (30 + years) meteorological data set at Toolik Lake to examine short-term variations (2015 ice-free season) and interannual variability (2010–2015 ice-free seasons) of CH 4 and CO 2 fluxes. We argue that the biological processing of DOC substrate that becomes available for decomposition as the tundra soil warms is important for understanding future trends in aquatic gas fluxes, whereas the variability and long-term trends of the physical and meteorological variables primarily affect the timing of when higher or lower than average fluxes are observed. We see no evidence suggesting that a tipping point will be reached soon to change the status of the aquatic system from gas source to sink. We estimate that changes in CH 4 and CO 2 fluxes will be constrained with a range of +30% and −10% of their current values over the next 30 years. 
    more » « less
  3. Abstract

    The deep ocean releases large amounts of old, pre‐industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2release is relevant to the global climate because its changes could alter atmospheric CO2levels on long time scales, and also affects the present‐day potential of the Southern Ocean to take up anthropogenic CO2. Here, year‐round profiling float measurements show that this CO2release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea‐ice edge. This band of high CO2subsurface water coincides with the outcropping of the 27.8 kg m−3isoneutral density surface that characterizes Indo‐Pacific Deep Water (IPDW). It has a potential partial pressure of CO2exceeding current atmospheric CO2levels (∆PCO2) by 175 ± 32 μatm. Ship‐based measurements reveal that IPDW exhibits a distinct ∆PCO2maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2decreases. Most of this vertical ∆PCO2decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2outgassing from the high‐carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.

     
    more » « less
  4. Abstract. Oceanic emissions of dimethyl sulfide (CH3SCH3,DMS) have long been recognized to impact aerosol particle composition andsize, the concentration of cloud condensation nuclei (CCN), and Earth'sradiation balance. The impact of oceanic emissions of methanethiol(CH3SH, MeSH), which is produced by the same oceanic precursor as DMS,on the volatile sulfur budget of the marine atmosphere is largelyunconstrained. Here we present direct flux measurements of MeSH oceanicemissions using the eddy covariance (EC) method with a high-resolutionproton-transfer-reaction time-of-flight mass spectrometer (PTR-ToFMS)detector and compare them to simultaneous flux measurements of DMS emissionsfrom a coastal ocean site. Campaign mean mixing ratios of DMS and MeSH were72 ppt (28–90 ppt interquartile range) and 19.1 ppt (7.6–24.5 pptinterquartile range), respectively. Campaign mean emission fluxes of DMS (FDMS) and MeSH (FMeSH) were 1.13 ppt m s−1 (0.53–1.61 ppt m s−1 interquartile range) and 0.21 ppt m s−1 (0.10–0.31 ppt m s−1 interquartile range), respectively. Linear least squares regression of observed MeSH and DMS flux indicates the emissions are highly correlatedwith each other (R2=0.65) over the course of the campaign,consistent with a shared oceanic source. The campaign mean DMS to MeSH fluxratio (FDMS:FMeSH) was 5.5 ± 3.0, calculated from the ratio of 304 individual coincident measurements of FDMS and FMeSH. Measured FDMS:FMeSH was weakly correlated (R2=0.15) withocean chlorophyll concentrations, with FDMS:FMeSH reaching a maximumof 10.8 ± 4.4 during a phytoplankton bloom period. No other volatilesulfur compounds were observed by PTR-ToFMS to have a resolvable emissionflux above their flux limit of detection or to have a gas-phase mixing ratio consistently above their limit of detection during the study period,suggesting DMS and MeSH are the dominant volatile organic sulfur compoundsemitted from the ocean at this site. The impact of this MeSH emission source on atmospheric budgets of sulfurdioxide (SO2) was evaluated by implementing observed emissions in a coupled ocean–atmosphere chemical box model using a newly compiled MeSHoxidation mechanism. Model results suggest that MeSH emissions lead toafternoon instantaneous SO2 production of 2.5 ppt h−1, which results in a 43 % increase in total SO2 production compared to a casewhere only DMS emissions are considered and accounts for 30% of theinstantaneous SO2 production in the marine boundary layer at the meanmeasured FDMS and FMeSH. This contribution of MeSH to SO2production is driven by a higher effective yield of SO2 from MeSHoxidation and the shorter oxidation lifetime of MeSH compared to DMS. Thislarge additional source of marine SO2 has not been previouslyconsidered in global models of marine sulfur cycling. The field measurementsand modeling results presented here demonstrate that MeSH is an importantcontributor to volatile sulfur budgets in the marine atmosphere and must be measured along with DMS in order to constrain marine sulfur budgets. Thislarge additional source of marine–reduced sulfur from MeSH will contribute to particle formation and growth and CCN abundance in the marine atmosphere, with subsequent impacts on climate. 
    more » « less
  5. null (Ed.)
    The remote central Arctic during summertime has a pristine atmosphere with very low aerosol particle concentrations. As the region becomes increasingly ice-free during summer, enhanced ocean-atmosphere fluxes of aerosol particles and precursor gases may therefore have impacts on the climate. However, large knowledge gaps remain regarding the sources and physicochemical properties of aerosols in this region. Here, we present insights into the molecular composition of semi-volatile aerosol components collected in September 2018 during the MOCCHA (Microbiology-Ocean-Cloud-Coupling in the High Arctic) campaign as part of the Arctic Ocean 2018 expedition with the Swedish Icebreaker Oden . Analysis was performed offline in the laboratory using an iodide High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS). Our analysis revealed significant signal from organic and sulfur-containing compounds, indicative of marine aerosol sources, with a wide range of carbon numbers and O : C ratios. Several of the sulfur-containing compounds are oxidation products of dimethyl sulfide (DMS), a gas released by phytoplankton and ice algae. Comparison of the time series of particulate and gas-phase DMS oxidation products did not reveal a significant correlation, indicative of the different lifetimes of precursor and oxidation products in the different phases. This is the first time the FIGAERO-HRToF-CIMS was used to investigate the composition of aerosols in the central Arctic. The detailed information on the molecular composition of Arctic aerosols presented here can be used for the assessment of aerosol solubility and volatility, which is relevant for understanding aerosol–cloud interactions. 
    more » « less