The increasing volume of electronic waste (e-waste) creates significant environmental and economic challenges which demands practical management strategies. Life Cycle Assessment (LCA) has been known as a principal tool for evaluating the environmental impact of e-waste recycling and disposal methods. However, its application is hampered by inconsistencies in methodology, data limitations, and variations in system boundaries. This study provides a review of current LCA tools used in e-waste analysis and identifies gaps and opportunities for improvement. It categorizes studies into three groups: studies that applied LCA to product and process optimization, impact evaluation, and policy development. Findings reveal that LCA has been helpful in assessing the sustainability of different recycling strategies. However, significant variations exist in methodological approaches and data accuracy. Challenges such as the lack of standardized LCA protocols, the limited availability of regionspecific impact data, and inconsistencies in assessment methodologies are still barriers to its widespread adoption. Finally, the study discusses emerging trends in LCA aimed at addressing current gaps, including the incorporation of machine learning and artificial intelligence for predictive modeling, dynamic impact assessment frameworks, and the role of real-time data collection via IoT-based sensors.
more »
« less
Electronic Waste, an Environmental Problem Exported to Developing Countries: The GOOD, the BAD and the UGLY
Electronic waste (e-waste) is a rapidly developing environmental problem particularly for the most developed countries. There are technological solutions for processing it, but these are costly, and the cheaper option for most developed countries has been to export most of the waste to less developed countries. There are various laws and policies for regulating the processing of e-waste at different governance scales such as the international Basel Convention, the regional Bamoko Convention, and various national laws. However, many of the regulations are not fully implemented and there is substantial financial pressure to maintain the jobs created for processing e-waste. Mexico, Brazil, Ghana Nigeria, India, and China have been selected for a more detailed study of the transboundary movements of e-waste. This includes a systematic review of existing literature, the application of the Driver, Pressure, State, Impact, Response (DPSIR) framework for analysing complex problems associated with social ecological systems, and the application of the Life Cycle Assessment (LCA) for evaluating the environmental impact of electronic devices from their manufacture through to their final disposal. Japan, Italy, Switzerland, and Norway have been selected for the LCA to show how e-waste is diverted to developing countries, as there is not sufficient data available for the assessment from the selected developing countries. GOOD, BAD and UGLY outcomes have been identified from this study: the GOOD is the creation of jobs and the use of e-waste as a source of raw materials; the BAD is the exacerbation of the already poor environmental conditions in developing countries; the UGLY is the negative impact on the health of workers processing e-waste due to a wide range of toxic components in this waste. There are a number of management options that are available to reduce the impact of the BAD and the UGLY, such as adopting the concept of a circular economy, urban mining, reducing loopholes and improving existing policies and regulations, as well as reducing the disparity in income between the top and bottom of the management hierarchy for e-waste disposal. The overarching message is a request for developed countries to help developing countries in the fight against e-waste, rather than exporting their environmental problems to these poorer regions.
more »
« less
- Award ID(s):
- 1840868
- PAR ID:
- 10280247
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 5302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The amount of electronic waste (e-waste) globally has doubled in just five years, from approximately 20 million tons to 40 million tons of e-waste generated per year. In 2016, the global amount of e-waste reached an all-time high of 44.7 million tons. E-waste is an invaluable unconventional resource due to its high metal content, as nearly 40% of e-waste is comprised of metals. Unfortunately, the rapid growth of e-waste is alarming due to severe environmental impacts and challenges associated with complex resource recovery that has led to the use of toxic chemicals. Furthermore, there is a very unfortunate ethical issue related to the flow of e-wastes from developed countries to developing countries. At this time, e-waste is often open pit burned and toxic chemicals are used without adequate regulations to recover metals such as copper. The recovered metals are eventually exported back to the developed countries. Thus, the current global circular economy of e-waste is not sustainable in terms of environmental impact as well as creation of ethical dilemmas. Although traditional metallurgical processes can be extended to e-waste treatment technologies, that is not enough. The complexity of e-waste requires the development of a new generation of metallurgical processes that can separate and extract metals from unconventional components such as polymers and a wide range of metals. This review focuses on the science and engineering of both conventional and innovative separation and recovery technologies for e-wastes with special attention being given to the overall sustainability. Physical separation processes, including disassembly, density separation, and magnetic separation, as well as thermal treatment of the polymeric component, such as pyrolysis, are discussed for the separation of metals and non-metals from e-wastes. The subsequent metal recovery processes through pyrometallurgy, hydrometallurgy, and biometallurgy are also discussed in depth. Finally, insights on future research towards sustainable treatment and recovery of e-waste are presented including the use of supercritical CO 2 .more » « less
-
Waste tracking is becoming an important concern for developed countries as well as developing regions, where municipalities aim to assure proper waste management considering environmental and economic objectives. Waste tracking is important not only for a transparent reporting system compatible with environmental regulations but also for economically viable waste collection and recovery solutions. In this paper, a waste tracking system based on the blockchain technology is introduced where different entities involved in the system will be able to retrieve required data from the platform and decide on their level of contributions. The conventional technologies do not provide a sufficient level of transparency and coordination among different entities. With the introduction of blockchain as a tamper-proof technology, municipalities can enhance the efficiency of their waste management efforts. The proposed blockchain technology can connect proper stakeholders towards collaboration and sharing information. The concept of a smart contract for waste management is discussed and further, a decision-making framework is developed to guide users of the system select proper services available to them, depending on the level of data sharing, cost, reliability, and the security level that they expect from the system.more » « less
-
The circular economy (CE) has emerged with the promise of conserving resources through approaches such as durability and extended product lifetimes. At the same time, buildings negatively contribute to resource use and waste production, making buildings a key target for CE strategies. However, the question of how durability and lifetimes affect the social and environmental impacts of building products remains largely unexplored. In this study, we applied environmental and social life cycle assessments (E-LCA and S-LCA, respectively) to a common building component, roof covering, to investigate the effects of durability and different lifespans, and the tradeoffs between social and environmental impacts. We tested different lifespan scenarios for three materials with different durability: thermoplastic polyolefin (TPO), zinc-coated steel, and galvanized aluminum sheets. The results suggest that it is critical to consider the tradeoffs of social and environmental benefits: steel had the most promising social performance, followed closely by aluminum, while the least durable material (TPO) had the worst environmental and social performance. However, the environmental impacts resulting from the production of aluminum sheets were significantly lower than the impacts from steel, which made aluminum the preferred choice for this case study. Moreover, product lifespans impacted the results in both E-LCA and S-LCA due to the number of replacements needed over the life of a 100- year building. We discuss key limitations of integrating E-LCA and S-LCA approaches, such as data aggregation and spatial issues, lack of standards on how to account for product durability, and concerns surrounding S-LCA results interpretation.more » « less
-
Life cycle impact assessment (LCA) provides a better understanding of the energy, water, and material input and evaluates any production system’s output impacts. LCA has been carried out on various crops and products across the world. Some countries, however, have none or only a few studies. Here, we present the results of a literature review, following the PRISMA protocol, of what has been done in LCA to help stakeholders in these regions to understand the environmental impact at different stages of a product. The published literature was examined using the Google Scholar database to synthesize LCA research on agricultural activities, and 74 studies were analyzed. The evaluated papers are extensively studied in order to comprehend the various impact categories involved in LCA. The study reveals that tomatoes and wheat were the major crops considered in LCA. The major environmental impacts, namely, human toxicity potential and terrestrial ecotoxicity potential, were the major focus. Furthermore, the most used impact methods were CML, ISO, and IPCC. It was also found that studies were most often conducted in the European sector since most models and databases are suited for European agri-food products. The literature review did not focus on a specific region or a crop. Consequently, many studies appeared while searching using the keywords. Notwithstanding such limitations, this review provides a valuable reference point for those practicing LCA.more » « less
An official website of the United States government

