Abstract. We compare primary productivity estimates based on different photosynthetic ‘currencies’ (electrons, O2 and carbon) collected from the dynamic coastal upwelling waters of the California Current. Fast Repetition Rate Fluorometry and O2/N2 measurements were used to collect high-resolution underway estimates of photosynthetic electron transport rates and net community productivity, respectively, alongside on-station 14C uptake experiments to measure gross carbon fixation rates. Our survey captured two upwelling filaments at Cape Blanco and Cape Mendocino with distinct biogeochemical signatures and iron availabilities, enabling us to examine photosynthetic processes along a natural iron gradient. Significant differences in photo-physiology, cell sizes, Si:NO3- draw-down ratios, and molecular markers of Fe-stress indicated that phytoplankton assemblages near Cape Mendocino were Fe-stressed, while those near Cape Blanco were Fe-replete. Upwelling of O2-poor deep water to the surface complicated O2-based net community productivity estimates, but we were able to correct for these vertical mixing effects using continuous [N2O] surface measurements and depth-profiles of ∂[O2]∂[N2O]. Vertical mixing corrections were strongly correlated to sea surface temperature, which serves as an N2O-independent proxy for upwelling. Following vertical mixing corrections, all three productivity estimates reflected trends in Fe-stress physiology, indicating greater productivity near Cape Blanco compared to Cape Mendocino. For all assemblages, carbon fixation varied as a hyperbolic function of electron transport rates, but the derived parameters of this relationship were highly variable and significantly correlated with physiological indicators of Fe-stress (σPSII, FV/FM, Si:NO3- and diatom-specific PSI gene expression), suggesting that iron availability influenced the coupling between photosynthetic electron transport and subsequent carbon fixation. Net community productivity showed strong coherence with daily-integrated photosynthetic electron transport rates across the entire cruise track, with no apparent relationship with Fe-stress. This result suggests that fluorescence-based estimates of gross photochemistry are still a good indicator for bulk primary productivity, even if Fe-limitation influences the stoichiometric relationship between productivity currencies.
more »
« less
Single-Turnover Variable Chlorophyll Fluorescence as a Tool for Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and Recommendations
Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms.
more »
« less
- Award ID(s):
- 1840868
- PAR ID:
- 10280254
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Are the oceans turning into deserts? Rising temperature, increasing surface stratification, and decreasing vertical inputs of nutrients are expected to cause an expansion of warm, nutrient deplete ecosystems. Such an expansion is predicted to negatively affect a trio of key ocean biogeochemical features: phytoplankton biomass, primary productivity, and carbon export. However, phytoplankton communities are complex adaptive systems with immense diversity that could render them at least partially resilient to global changes. This can be illustrated by the biology of theProchlorococcus“collective.” Adaptations to counter stress, use of alternative nutrient sources, and frugal resource allocation can allowProchlorococcusto buffer climate‐driven changes in nutrient availability. In contrast, cell physiology is more sensitive to temperature changes. Here, we argue that biogeochemical models need to consider the adaptive potential of diverse phytoplankton communities. However, a full understanding of phytoplankton resilience to future ocean changes is hampered by a lack of global biogeographic observations to test theories. We propose that the resilience may in fact be greater in oligotrophic waters than currently considered with implications for future predictions of phytoplankton biomass, primary productivity, and carbon export.more » « less
-
Goes, J (Ed.)As climate change and carbon dioxide (CO2) emissions continue to alter oceans, it is critical to understand how marine life will respond. Atmospheric CO2 dissolves into ocean water, beginning a series of chemical reactions that lower pH and deplete free carbonate ions—this phenomenon is called ocean acidification (OA). Marine phytoplankton impact ocean chemistry by performing photosynthesis and cycling carbon. They also form the base of marine food webs and are thus implicated in fishery productivity and human food security. As part of the National Oceanic and Atmospheric Administration's Ocean Acidification Program, this research aimed to document the progression of OA and its effects on marine life. The project combined data analysis, remote sensing, and laboratory experiments to understand phytoplankton community change. Data from scientific cruises in 2018 and 2022 were compared to investigate inter-annual variability in phytoplankton distribution, size, and efficiency. These cruises measured chemical and biological indicators, including pH, temperature, and pigments associated with particular plankton taxa. Water samples collected at various depths were imaged to gather phytoplankton cell counts. The findings demonstrate a clear pH gradient along the East Coast, with northern waters being significantly more acidic than southern waters. This difference is primarily driven by increased precipitation, land characteristics, and ocean current dynamics. Biological community structure and the photosynthetic efficiency of the phytoplankton sampled along the coast varied with latitude and time, demonstrating that continued climate change and intensifying acidification will affect phytoplankton distribution and consumption of CO2, with reverberations throughout the ocean and climate systems at large.more » « less
-
In the Equatorial Atlantic nitrogen availability is assumed to control phytoplankton dynamics. However, in situ measurements of phytoplankton physiology and productivity are surprisingly sparse in comparison with the North Atlantic. In addition to the formation of the Equatorial cold tongue in the boreal summer, tropical instability waves (TIWs) and related short-term processes may locally cause episodic events of enhanced nutrient supply to the euphotic layer. Here, we assess changes in phytoplankton photophysiology in response to such episodic events as well as short-term nutrient addition experiments using a pair of custom-built fluorometers that measure chlorophyll a (Chl a ) variable fluorescence and fluorescence lifetimes. The fluorometers were deployed during a transatlantic cruise along the Equator in the fall of 2019. We hypothesized that the Equatorial Atlantic is nitrogen-limited, with an increasing degree of limitation to the west where the cold tongue is not prominent, and that infrequent nitrate injection by TIW related processes are the primary source alleviating this limitation. We further hypothesized phytoplankton are well acclimated to the low levels of nitrogen, and once nitrogen is supplied, they can rapidly utilize it to stimulate growth and productivity. Across three TIW events encountered, we observed increased productivity and chlorophyll a concentration concurrent with a decreased photochemical conversion efficiency and overall photophysiological competency. Moreover, the observed decrease in photosynthetic turnover rates toward the western section suggested a 70% decrease in growth rates compared to their maximum values under nutrient-replete conditions. This decrease aligned with the increased growth rates observed following 24 h incubation with added nitrate in the western section. These results support our hypotheses that nitrogen is the limiting factor in the region and that phytoplankton are in a state of balanced growth, waiting to “body surf” waves of nutrients which fuel growth and productivity.more » « less
-
Abstract Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquisition and processing approaches that use unmanned aerial vehicles (UAVs) and surface geophysical techniques. In particular, we applied these approaches to a soybean farm in Arkansas to characterize the soil–plant coupled spatial and temporal heterogeneity, as well as to identify key environmental factors that influence plant growth and yield. UAV-based multitemporal acquisition of high-resolution RGB (red–green–blue) imagery and direct measurements were used to monitor plant height and photosynthetic activity. We present an algorithm that efficiently exploits the high-resolution UAV images to estimate plant spatial abundance and plant vigor throughout the growing season. Such plant characterization is extremely important for the identification of anomalous areas, providing easily interpretable information that can be used to guide near-real-time farming decisions. Additionally, high-resolution multitemporal surface geophysical measurements of apparent soil electrical conductivity were used to estimate the spatial heterogeneity of soil texture. By integrating the multiscale multitype soil and plant datasets, we identified the spatiotemporal co-variance between soil properties and plant development and yield. Our novel approach for early season monitoring of plant spatial abundance identified areas of low productivity controlled by soil clay content, while temporal analysis of geophysical data showed the impact of soil moisture and irrigation practice (controlled by topography) on plant dynamics. Our study demonstrates the effective coupling of UAV data products with geophysical data to extract critical information for farm management.more » « less
An official website of the United States government

