Abstract Efficient co‐utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose−xylose mixtures. This study focuses on enhancing phenylalanine production by engineeringEscherichia colito efficiently co‐utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose‐to‐glucose flux ratio. A mutant copy of the xylose‐specific activator (XylR) was then introduced into the phenylalanine‐overproducingE. coliNST74, which relieved carbon catabolite repression and enabled efficient glucose−xylose co‐utilization. Carbon contribution analysis through13C‐fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose−xylose mixture; a threefold increase over NST74. Then, using biomass‐derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9‐fold increase over NST74. Notably, and consistent with the carbon contribution analysis, thexylR*mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L‐h). This study presents a novel strategy for enhancing phenylalanine production through the co‐utilization of glucose and xylose in aerobicE. colicultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.
more »
« less
Xyloglucan Xylosyltransferase 1 Displays Promiscuity Toward Donor Substrates During In vitro Reactions
Abstract Glycosyltransferases (GTs) are a large family of enzymes that add sugars to a broad range of acceptor substrates, including polysaccharides, proteins, and lipids, by utilizing a wide variety of donor substrates in the form of activated sugars. Individual GTs have generally been considered to exhibit a high level of substrate specificity, but this has not been thoroughly investigated across the extremely large set of GTs. Here we investigate Xyloglucan Xylosyltransferase 1 (XXT1), a GT involved in synthesis of the plant cell wall polysaccharide, xyloglucan. Xyloglucan has a glucan backbone, with initial side chain substitutions exclusively composed of xylose from UDP-Xylose. While this conserved substitution pattern suggests a high substrate specificity for XXT1, our in vitro kinetic studies elucidate a more complex set of behavior. Kinetic studies demonstrate comparable kcat values for reactions with UDP-Xylose and UDP-Glucose, while reactions with UDP-Arabinose and UDP-Galactose are over 10-fold slower. Using kcat/Km as a measure of efficiency, UDP-Xylose is 8-fold more efficient as a substrate than the next best alternative, UDP-Glucose. To the best of our knowledge, we are the first to demonstrate that not all plant XXTs are highly substrate specific, and some do show significant promiscuity in their in vitro reactions. Kinetic parameters alone likely do not explain the high substrate selectivity in planta, suggesting there are additional control mechanisms operating during polysaccharide biosynthesis. Improved understanding of substrate specificity of the GTs will aid in protein engineering, development of diagnostic tools, and understanding of biological systems.
more »
« less
- PAR ID:
- 10280288
- Date Published:
- Journal Name:
- Plant and Cell Physiology
- ISSN:
- 0032-0781
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.more » « less
-
Abstract Cellular import of D-xylose, the second most abundant sugar in typical lignocellulosic biomass, has been evidenced to be an energy-depriving process in bacterial biocatalysts. The sugar facilitator of Zymomonas mobilis, Glf, is capable of importing xylose at high rates without extra energy input, but is inhibited by D-glucose (the primary biomass sugar), potentially limiting the utility of this transporter for fermentation of sugar mixtures derived from lignocellulose. In this work we developed an Escherichia coli platform strain deficient in glucose and xylose transport to facilitate directed evolution of Glf to overcome glucose inhibition. Using this platform, we isolated nine Glf variants created by both random and site-saturation mutagenesis with increased xylose utilization rates ranging from 4.8-fold to 13-fold relative to wild-type Glf when fermenting 100 g l–1 glucose–xylose mixtures. Diverse point mutations such as A165M and L445I were discovered leading to released glucose inhibition. Most of these mutations likely alter sugar coordinating pocket for the 6-hydroxymethyl group of D-glucose. These discovered glucose-resistant Glf variants can be potentially used as energy-conservative alternatives to the native sugar transport systems of bacterial biocatalysts for fermentation of lignocellulose-derived sugars.more » « less
-
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.more » « less
-
Abstract Catalytic constant (Kcat) is to describe the efficiency of catalyzing reactions. The Kcat value of an enzyme-substrate pair indicates the rate an enzyme converts saturated substrates into product during the catalytic process. However, it is challenging to construct robust prediction models for this important property. Most of the existing models, including the one recently published by Nature Catalysis (Li et al.), are suffering from the overfitting issue. In this study, we proposed a novel protocol to construct Kcat prediction models, introducing an intermedia step to separately develop substrate and protein processors. The substrate processor leverages analyzing Simplified Molecular Input Line Entry System (SMILES) strings using a graph neural network model, attentive FP, while the protein processor abstracts protein sequence information utilizing long short-term memory architecture. This protocol not only mitigates the impact of data imbalance in the original dataset but also provides greater flexibility in customizing the general-purpose Kcat prediction model to enhance the prediction accuracy for specific enzyme classes. Our general-purpose Kcat prediction model demonstrates significantly enhanced stability and slightly better accuracy (R2 value of 0.54 versus 0.50) in comparison with Li et al.’s model using the same dataset. Additionally, our modeling protocol enables personalization of fine-tuning the general-purpose Kcat model for specific enzyme categories through focused learning. Using Cytochrome P450 (CYP450) enzymes as a case study, we achieved the best R2 value of 0.64 for the focused model. The high-quality performance and expandability of the model guarantee its broad applications in enzyme engineering and drug research & development.more » « less
An official website of the United States government

