skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonsparse Learning with Latent Variables
As a popular tool for producing meaningful and interpretable models, large-scale sparse learning works efficiently in many optimization applications when the underlying structures are indeed or close to sparse. However, naively applying the existing regularization methods can result in misleading outcomes because of model misspecification. In this paper, we consider nonsparse learning under the factors plus sparsity structure, which yields a joint modeling of sparse individual effects and common latent factors. A new methodology of nonsparse learning with latent variables (NSL) is proposed for joint estimation of the effects of two groups of features, one for individual effects and the other associated with the latent substructures, when the nonsparse effects are captured by the leading population principal component score vectors. We derive the convergence rates of both sample principal components and their score vectors that hold for a wide class of distributions. With the properly estimated latent variables, properties including model selection consistency and oracle inequalities under various prediction and estimation losses are established. Our new methodology and results are evidenced by simulation and real-data examples.  more » « less
Award ID(s):
1953356
PAR ID:
10280427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
Volume:
69
Issue:
1
ISSN:
0030-364X
Page Range / eLocation ID:
346 to 359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the fundamental problem of learning multi-layer generator models. The multi-layer generator model builds multiple layers of latent variables as a prior model on top of the generator, which benefits learning complex data distribution and hierarchical representations. However, such a prior model usually focuses on modeling inter-layer relations between latent variables by assuming non-informative (conditional) Gaussian distributions, which can be limited in model expressivity. To tackle this issue and learn more expressive prior models, we propose an energy-based model (EBM) on the joint latent space over all layers of latent variables with the multi-layer generator as its backbone. Such joint latent space EBM prior model captures the intra-layer contextual relations at each layer through layer-wise energy terms, and latent variables across different layers are jointly corrected. We develop a joint training scheme via maximum likelihood estimation (MLE), which involves Markov Chain Monte Carlo (MCMC) sampling for both prior and posterior distributions of the latent variables from different layers. To ensure efficient inference and learning, we further propose a variational training scheme where an inference model is used to amortize the costly posterior MCMC sampling. Our experiments demonstrate that the learned model can be expressive in generating high-quality images and capturing hierarchical features for better outlier detection. 
    more » « less
  2. In many machine learning problems, one has to work with data of different types, including continuous, discrete, and categorical data. Further, it is often the case that many of these data are missing from the database. This paper proposes a Gaussian process framework that efficiently captures the information from mixed numerical and categorical data that effectively incorporates missing variables. First, we propose a generative model for the mixed-type data. The generative model exploits Gaussian processes with kernels constructed from the latent vectors. We also propose a method for inference of the unknowns, and in its implementation, we rely on a sparse spectrum approximation of the Gaussian processes and variational inference. We demonstrate the performance of the method for both supervised and unsupervised tasks. First, we investigate the imputation of missing variables in an unsupervised setting, and then we show the results of joint imputation and classification on IBM employee data. 
    more » « less
  3. Causality lays the foundation for the trajectory of our world. Causal inference (CI), which aims to infer intrinsic causal relations among variables of interest, has emerged as a crucial research topic. Nevertheless, the lack of observation of important variables (e.g., confounders, mediators, exogenous variables, etc.) severely compromises the reliability of CI methods. The issue may arise from the inherent difficulty in measuring the variables. Additionally, in observational studies where variables are passively recorded, certain covariates might be inadvertently omitted by the experimenter. Depending on the type of unobserved variables and the specific CI task, various consequences can be incurred if these latent variables are carelessly handled, such as biased estimation of causal effects, incomplete understanding of causal mechanisms, lack of individual-level causal consideration, etc. In this survey, we provide a comprehensive review of recent developments in CI with latent variables. We start by discussing traditional CI techniques when variables of interest are assumed to be fully observed. Afterward, under the taxonomy of circumvention and inference-based methods, we provide an in-depth discussion of various CI strategies to handle latent variables, covering the tasks of causal effect estimation, mediation analysis, counterfactual reasoning, and causal discovery. Furthermore, we generalize the discussion to graph data where interference among units may exist. Finally, we offer fresh aspects for further advancement of CI with latent variables, especially new opportunities in the era of large language models (LLMs). 
    more » « less
  4. We formulate Wyner's common information for random vectors x ϵ R n with joint Gaussian density. We show that finding the common information of Gaussian vectors is equivalent to maximizing a log-determinant of the additive Gaussian noise covariance matrix. We coin such optimization problem as a constrained minimum determinant factor analysis (CMDFA) problem. The convexity of such problem with necessary and sufficient conditions on CMDFA solution is shown. We study the algebraic properties of CMDFA solution space, through which we study two sparse Gaussian graphical models, namely, latent Gaussian stars, and explicit Gaussian chains. Interestingly, we show that depending on pairwise covariance values in a Gaussian graphical structure, one may not always end up with the same parameters and structure for CMDFA solution as those found via graphical learning algorithms. In addition, our results suggest that Gaussian chains have little room left for dimension reduction in terms of the number of latent variables required in their CMDFA solutions. 
    more » « less
  5. Summary Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program for estimating a sparse graph plus a low-rank term that adjusts for latent variables; however, this approach poses challenges from both computational and statistical perspectives. We propose an alternative, simple solution: apply a hard-thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, the approach of thresholding the graphical lasso is shown to be graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. The results are extended to estimators for thresholded neighbourhood selection and constrained $$\ell_{1}$$-minimization for inverse matrix estimation as well. We show that our simple thresholded graph estimators yield stronger empirical results than existing methods for the latent variable graphical model problem, and we apply them to a neuroscience case study on estimating functional neural connections. 
    more » « less