skip to main content

Title: Zwicky Transient Facility and Globular Clusters: the Period-Luminosity and Period-Luminosity-Color Relations for Late-Type Contact Binaries
In this work, we aimed to derive the gri-band period-luminosity (PL) and period-luminosity-color (PLC) relations for late-type contact binaries, for the first time, located in the globular clusters, using the homogeneous light curves collected by the Zwicky Transient Factory (ZTF). We started with 79 contact binaries in 15 globular clusters, and retained 30 contact binaries in 10 globular clusters that have adequate number of data points in the ZTF light curves and unaffected by blending. Magnitudes at mean and maximum light of these contact binaries were determined using a fourth-order Fourier expansion, while extinction corrections were done using the {\tt Bayerstar2019} 3D reddening map together with adopting the homogeneous distances to their host globular clusters. After removing early-type and "anomaly" contact binaries, our derived gri-band PL and period-Wesenheit (PW) relations exhibit a much larger dispersion with large errors on the fitted coefficients. Nevertheless, the gr-band PL and PW relations based on this small sample of contact binaries in globular clusters were consistent with those based on a larger sample of nearby contact binaries. Good agreements of the PL and PW relations suggested both samples of contact binaries in the local Solar neighborhood and in the distant globular clusters can be more » combined and used to derive and calibrate the PL, PW and PLC relations. The final derived gr-band PL, PW and PLC relations were much improved than those based on the limited sample of contact binaries in the globular clusters. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
1440341 2034437
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. As primary anchors of the distance scale, Cepheid stars play a crucial role in our understanding of the distance scale of the Universe because of their period-luminosity relation. Determining precise and consistent parameters (radius, temperature, color excess, and projection factor) of Cepheid pulsating stars is therefore very important. Aims. With the high-precision parallaxes delivered by the early third Gaia data release (EDR3), we aim to derive various parameters of Cepheid stars in order to calibrate the period-luminosity and period-radius relations and to investigate the relation of period to p -factor. Methods. We applied an implementation of the parallax-of-pulsation method through the algorithm called spectro-photo-interferometry of pulsating stars (SPIPS), which combines all types of available data for a variable star (multiband and multicolor photometry, radial velocity, effective temperature, and interferometry measurements) in a global modeling of its pulsation. Results. We present the SPIPS modeling of a sample of 63 Galactic Cepheids. Adopting Gaia EDR3 parallaxes as an input associated with the best available dataset, we derive consistent values of parameters for these stars such as the radius, multiband apparent magnitudes, effective temperatures, color excesses, period changes, Fourier parameters, and the projection factor. Conclusions. Using the best set of data andmore »the most precise distances for Milky Way Cepheids, we derive new calibrations of the period-luminosity and period-radius relations: M K S = −5.529 ±0.015   −  3.141 ±0.050 (log P   −  0.9) and log R = 1.763 ±0.003   +  0.653 ±0.012 (log P   −  0.9). After investigating the dependences of the projection factor on the parameters of the stars, we find a high dispersion of its values and no evidence of its correlation with the period or with any other parameters such as radial velocity, temperature, or metallicity. Statistically, the p -factor has an average value of p  = 1.26 ± 0.07, but with an unsatisfactory agreement ( σ  = 0.15). In absence of any clear correlation between the p -factor and other quantities, the best agreement is obtained under the assumption that the p -factor can take any value in a band with a width of 0.15. This result highlights the need for a further examination of the physics behind the p -factor.« less
  2. ABSTRACT We characterize ${\sim } 71\, 200$ W Ursae Majoris (UMa) type (EW) contact binaries, including ${\sim } 12\, 600$ new discoveries, using All-Sky Automated Survey for SuperNovae (ASAN-SN)V-band all-sky light curves along with archival data from Gaia, 2MASS, AllWISE, LAMOST, GALAH, RAVE, and APOGEE. There is a clean break in the EW period–luminosity relation at $\rm \log (\it P/{\rm d})\,{\simeq }\,{\rm -0.30}$, separating the longer period, early-type EW binaries from the shorter period, late-type systems. The two populations are even more cleanly separated in the space of period and effective temperature, by $T_{\rm eff}=6710\,{\rm K}-1760\,{\rm K}\, \log (P/0.5\,{\rm d})$. Early-type and late-type EW binaries follow opposite trends in Teff with orbital period. For longer periods, early-type EW binaries are cooler, while late-type systems are hotter. We derive period–luminosity relationships in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands for the late-type and early-type EW binaries separated by both period and effective temperature, and by period alone. The dichotomy of contact binaries is almost certainly related to the Kraft break and the related changes in envelope structure, winds, and angular momentum loss.
  3. We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ =more »0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC.« less
  4. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to stripmore »off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less
  5. Using Zwicky Transient Facility (ZTF) observations, we identify a pair of "sibling" Type Ia supernovae (SNe Ia), i.e., hosted by the same galaxy at z = 0.0541. They exploded within 200 days from each other at a separation of 0.6″ corresponding to a projected distance of only 0.6 kpc. Performing SALT2 light curve fits to the gri ZTF photometry, we show that for these equally distant "standardizable candles", there is a difference of 2 magnitudes in their rest frame B-band peaks, and the fainter SN has a significantly red SALT2 colour c=0.57± 0.04, while the stretch values x1 of the two SNe are similar, suggesting that the fainter SN is attenuated by dust in the interstellar medium of the host galaxy. We use these measurements to infer the SALT2 colour standardization parameter, β = 3.5 ± 0.3, independent of the underlying cosmology and Malmquist bias. Assuming the colour excess is entirely due to dust, the result differs by 2σ from the average Milky-Way total-to-selective extinction ratio, but is in good agreement with the colour-brightness corrections empirically derived from the most recent SN Ia Hubble-Lemaitre diagram fits. Thus we suggest that SN "siblings", which will increasingly be discovered in the comingmore »years, can be used to probe the validity of the colour and lightcurve shape corrections using in SN Ia cosmology while avoiding important systematic effects in their inference from global multi-parameter fits to inhomogeneous data-sets, and also help constrain the role of interstellar dust in SN Ia cosmology.« less