skip to main content


Title: Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Group fairness is measured via parity of quantitative metrics across different protected demographic groups. In this paper, we investigate the problem of reliably assessing group fairness metrics when labeled examples are few but unlabeled examples are plentiful. We propose a general Bayesian framework that can augment labeled data with unlabeled data to produce more accurate and lower-variance estimates compared to methods based on labeled data alone. Our approach estimates calibrated scores (for unlabeled examples) of each group using a hierarchical latent variable model conditioned on labeled examples. This in turn allows for inference of posterior distributions for an array of group fairness metrics with a notion of uncertainty. We demonstrate that our approach leads to significant and consistent reductions in estimation error across multiple well-known fairness datasets, sensitive attributes, and predictive models. The results clearly show the benefits of using both unlabeled data and Bayesian inference in assessing whether a prediction model is fair or not.  more » « less
Award ID(s):
1927245 1900644
NSF-PAR ID:
10280596
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems
Volume:
33
ISSN:
1049-5258
Page Range / eLocation ID:
18600-18612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning. 
    more » « less
  2. The commonsense natural language inference (CNLI) tasks aim to select the most likely follow-up statement to a contextual description of ordinary, everyday events and facts. Current approaches to transfer learning of CNLI models across tasks require many labeled data from the new task. This paper presents a way to reduce this need for additional annotated training data from the new task by leveraging symbolic knowledge bases, such as ConceptNet. We formulate a teacher-student framework for mixed symbolic-neural reasoning, with the large-scale symbolic knowledge base serving as the teacher and a trained CNLI model as the student. This hybrid distillation process involves two steps. The first step is a symbolic reasoning process. Given a collection of unlabeled data, we use an abductive reasoning framework based on Grenander's pattern theory to create weakly labeled data. Pattern theory is an energy-based graphical probabilistic framework for reasoning among random variables with varying dependency structures. In the second step, the weakly labeled data, along with a fraction of the labeled data, is used to transfer-learn the CNLI model into the new task. The goal is to reduce the fraction of labeled data required. We demonstrate the efficacy of our approach by using three publicly available datasets (OpenBookQA, SWAG, and HellaSWAG) and evaluating three CNLI models (BERT, LSTM, and ESIM) that represent different tasks. We show that, on average, we achieve 63% of the top performance of a fully supervised BERT model with no labeled data. With only 1000 labeled samples, we can improve this performance to 72%. Interestingly, without training, the teacher mechanism itself has significant inference power. The pattern theory framework achieves 32.7% accuracy on OpenBookQA, outperforming transformer-based models such as GPT (26.6%), GPT-2 (30.2%), and BERT (27.1%) by a significant margin. We demonstrate that the framework can be generalized to successfully train neural CNLI models using knowledge distillation under unsupervised and semi-supervised learning settings. Our results show that it outperforms all unsupervised and weakly supervised baselines and some early supervised approaches, while offering competitive performance with fully supervised baselines. Additionally, we show that the abductive learning framework can be adapted for other downstream tasks, such as unsupervised semantic textual similarity, unsupervised sentiment classification, and zero-shot text classification, without significant modification to the framework. Finally, user studies show that the generated interpretations enhance its explainability by providing key insights into its reasoning mechanism. 
    more » « less
  3. Intersectionality is a framework that analyzes how interlocking systems of power and oppression affect individuals along overlapping dimensions including race, gender, sexual orientation, class, and disability. Intersectionality theory therefore implies it is important that fairness in artificial intelligence systems be protected with regard to multi-dimensional protected attributes. However, the measurement of fairness becomes statistically challenging in the multi-dimensional setting due to data sparsity, which increases rapidly in the number of dimensions, and in the values per dimension. We present a Bayesian probabilistic modeling approach for the reliable, data-efficient estimation of fairness with multidimensional protected attributes, which we apply to two existing intersectional fairness metrics. Experimental results on census data and the COMPAS criminal justice recidivism dataset demonstrate the utility of our methodology, and show that Bayesian methods are valuable for the modeling and measurement of fairness in intersectional contexts. 
    more » « less
  4. A Bayesian lattice filtering and smoothing approach is proposed for fast and accurate modeling and inference in multivariate non‐stationary time series. This approach offers computational feasibility and interpretable time‐frequency analysis in the multivariate context. The proposed framework allows us to obtain posterior estimates of the time‐varying spectral densities of individual time series components, as well as posterior measurements of the time‐frequency relationships across multiple components, such as time‐varying coherence and partial coherence. The proposed formulation considers multivariate dynamic linear models (MDLMs) on the forward and backward time‐varying partial autocorrelation coefficients (TV‐VPARCOR). Computationally expensive schemes for posterior inference on the multivariate dynamic PARCOR model are avoided using approximations in the MDLM context. Approximate inference on the corresponding time‐varying vector autoregressive (TV‐VAR) coefficients is obtained via Whittle's algorithm. A key aspect of the proposed TV‐VPARCOR representations is that they are of lower dimension, and therefore more efficient, than TV‐VAR representations. The performance of the TV‐VPARCOR models is illustrated in simulation studies and in the analysis of multivariate non‐stationary temporal data arising in neuroscience and environmental applications. Model performance is evaluated using goodness‐of‐fit measurements in the time‐frequency domain and also by assessing the quality of short‐term forecasting.

     
    more » « less
  5. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less