skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Fairness from Demonstrations via Inverse Reinforcement Learning
Defining fairness in algorithmic contexts is challenging, particularly when adapting to new domains. Our research introduces a novel method for learning and applying group fairness preferences across different classification domains, without the need for manual fine-tuning. Utilizing concepts from inverse reinforcement learning (IRL), our approach enables the extraction and application of fairness preferences from human experts or established algorithms. We propose the first technique for using IRL to recover and adapt group fairness preferences to new domains, offering a low-touch solution for implementing fair classifiers in settings where expert-established fairness tradeoffs are not yet defined.  more » « less
Award ID(s):
1939743
PAR ID:
10586335
Author(s) / Creator(s):
;
Publisher / Repository:
The 2024 ACM Conference on Fairness, Accountability, and Transparency
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract: In the learning sciences, heterogeneity among students usually leads to different learning strategies or patterns and may require different types of instructional interventions. Therefore, it is important to investigate student subtyping, which is to group students into subtypes based on their learning patterns. Subtyping from complex student learning processes is often challenging because of the information heterogeneity and temporal dynamics. Various inverse reinforcement learning (IRL) algorithms have been successfully employed in many domains for inducing policies from the trajectories and recently has been applied for analyzing students’ temporal logs to identify their domain knowledge patterns. IRL was originally designed to model the data by assuming that all trajectories have a single pattern or strategy. Due to the heterogeneity among students, their strategies can vary greatly and the design of traditional IRL may lead to suboptimal performance. In this paper, we applied a novel expectation-maximization IRL (EM-IRL) to extract heterogeneous learning strategies from sequential data collected from three simulation environments and real-world longitudinal students’ logs. Experiments on simulation environments showed that EM-IRL can successfully identify different policies from the heterogeneous sequences with different strategies. Furthermore, experimental results from our educational dataset showed that EM-IRL can be used to obtain different student subtypes: a “learning-oriented” subtype who learned the material as much as possible regardless of the time in that they spent significantly more time than the other two subtypes and learned significantly; an“efficient-oriented”subtype who learned efficiently in that they not only learned significantly but also spent less time than the first subtype; a “no learning” subtype who spent less amount of time than first subtype and failed to learn. 
    more » « less
  2. This paper presents an inverse reinforcement learning (IRL) framework for Bayesian stopping time problems. By observing the actions of a Bayesian decision maker, we provide a necessary and sufficient condition to identify if these actions are consistent with optimizing a cost function. In a Bayesian (partially observed) setting, the inverse learner can at best identify optimality wrt the observed strategies. Our IRL algorithm identifies optimality and then constructs set-valued estimates of the cost function. To achieve this IRL objective, we use novel ideas from Bayesian revealed preferences stemming from microeconomics. We illustrate the proposed IRL scheme using two important examples of stopping time problems, namely, sequential hypothesis testing and Bayesian search. As a real-world example, we illustrate using a YouTube dataset comprising metadata from 190000 videos how the proposed IRL method predicts user engagement in online multimedia platforms with high accuracy. Finally, for finite datasets, we propose an IRL detection algorithm and give finite sample bounds on its error probabilities. 
    more » « less
  3. Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society. 
    more » « less
  4. Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? These scenarios force us to evaluate the trade-off between collective norms and our own personal objectives. To create effective AI-human teams, we must equip AI agents with a model of how humans make trade-offs in complex, constrained environments. These agents will be able to mirror human behavior or to draw human attention to situations where decision making could be improved. To this end, we propose a novel inverse reinforcement learning (IRL) method for learning implicit hard and soft constraints from demonstrations, enabling agents to quickly adapt to new settings. In addition, learning soft constraints over states, actions, and state features allows agents to transfer this knowledge to new domains that share similar aspects. 
    more » « less
  5. Inverse reinforcement learning (IRL) deals with estimating an agent’s utility function from its actions. In this paper, we consider how an agent can hide its strategy and mitigate an adversarial IRL attack; we call this inverse IRL (I-IRL). How should the decision maker choose its response to ensure a poor reconstruction of its strategy by an adversary performing IRL to estimate the agent’s strategy? This paper comprises four results: First, we present an adversarial IRL algorithm that estimates the agent’s strategy while controlling the agent’s utility function. Then, we propose an I-IRL result that mitigates the IRL algorithm used by the adversary. Our I-IRL results are based on revealed preference theory in microeconomics. The key idea is for the agent to deliberately choose sub-optimal responses so that its true strategy is sufficiently masked. Third, we give a sample complexity result for our main I-IRL result when the agent has noisy estimates of the adversary-specified utility function. Finally, we illustrate our I-IRL scheme in a radar problem where a meta-cognitive radar is trying to mitigate an adversarial target. 
    more » « less