skip to main content


Search for: All records

Award ID contains: 1761548

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Figurative and metaphorical language are commonplace in discourse, and figurative expressions play an important role in communication and cognition. However, figurative language has been a relatively under-studied area in NLP, and it remains an open question to what extent modern language models can interpret nonliteral phrases. To address this question, we introduce Fig-QA, a Winograd-style nonliteral language understanding task consisting of correctly interpreting paired figurative phrases with divergent meanings. We evaluate the performance of several state-of-the-art language models on this task, and find that although language models achieve performance significantly over chance, they still fall short of human performance, particularly in zero- or few-shot settings. This suggests that further work is needed to improve the nonliteral reasoning capabilities of language models. 
    more » « less
  2. The performance of multilingual pretrained models is highly dependent on the availability of monolingual or parallel text present in a target language. Thus, the majority of the world’s languages cannot benefit from recent progress in NLP as they have no or limited textual data. To expand possibilities of using NLP technology in these under-represented languages, we systematically study strategies that relax the reliance on conventional language resources through the use of bilingual lexicons, an alternative resource with much better language coverage. We analyze different strategies to synthesize textual or labeled data using lexicons, and how this data can be combined with monolingual or parallel text when available. For 19 under-represented languages across 3 tasks, our methods lead to consistent improvements of up to 5 and 15 points with and without extra monolingual text respectively. Overall, our study highlights how NLP methods can be adapted to thousands more languages that are under-served by current technology. 
    more » « less
  3. null (Ed.)
    Active learning (AL) uses a data selection algorithm to select useful training samples to minimize annotation cost. This is now an essential tool for building low-resource syntactic analyzers such as part-of-speech (POS) taggers. Existing AL heuristics are generally designed on the principle of selecting uncertain yet representative training instances, where annotating these instances may reduce a large number of errors. However, in an empirical study across six typologically diverse languages (German, Swedish, Galician, North Sami, Persian, and Ukrainian), we found the surprising result that even in an oracle scenario where we know the true uncertainty of predictions, these current heuristics are far from optimal. Based on this analysis, we pose the problem of AL as selecting instances that maximally reduce the confusion between particular pairs of output tags. Extensive experimentation on the aforementioned languages shows that our proposed AL strategy outperforms other AL strategies by a significant margin. We also present auxiliary results demonstrating the importance of proper calibration of models, which we ensure through cross-view training, and analysis demonstrating how our proposed strategy selects examples that more closely follow the oracle data distribution. The code is publicly released here. 1 
    more » « less
  4. Text generation systems are ubiquitous in natural language processing applications. However, evaluation of these systems remains a challenge, especially in multilingual settings. In this paper, we propose L’AMBRE – a metric to evaluate the morphosyntactic well-formedness of text using its dependency parse and morphosyntactic rules of the language. We present a way to automatically extract various rules governing morphosyntax directly from dependency treebanks. To tackle the noisy outputs from text generation systems, we propose a simple methodology to train robust parsers. We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)