skip to main content


Title: A Method for Constraint Inference Using Pose and Wrench Measurements
Many physical tasks such as pulling out a drawer or wiping a table can be modeled with geometric constraints. These geometric constraints are characterized by restrictions on kinematic trajectories and reaction wrenches (forces and moments) of objects under the influence of the constraint. This paper presents a method to infer geometric constraints involving unmodeled objects in human demonstrations using both kinematic and wrench measurements. Our approach takes a recording of a human demonstration and determines what constraints are present, when they occur, and their parameters (e.g. positions). By using both kinematic and wrench information, our methods are able to reliably identify a variety of constraint types, even if the constraints only exist for short durations within the demonstration. We present a systematic approach to fitting arbitrary scleronomic constraint models to kinematic and wrench measurements. Reaction forces are estimated from measurements by removing friction. Position, orientation, force, and moment error metrics are developed to provide systematic comparison between constraint models. By conducting a user study, we show that our methods can reliably identify constraints in realistic situations and confirm the value of including forces and moments in the model regression and selection process.  more » « less
Award ID(s):
1830242
PAR ID:
10280899
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gouttefarde M. ; Bruckmann T. ; Pott A. (Ed.)
    A fully-constrained π‘›βˆ’π·π‘‚πΉ cable-driven parallel robot (CDPR) has wrench closure if there are 𝑛+1 cables exerting positive tensions spanning the wrench space. However, the quality of wrench closure is often dependent on the geometric configuration of the supporting in-parallel chains of the CDPR. The reconfigurability endowed by adding in-chain kinematic and/or actuation redundancy to a conventional cable robot could greatly improve quality of the workspace. However, the status of various joints (active, passive or locked) affect the complexity of the systematic formulation and ultimate wrench-based analysis. Past efforts have tended to equilibrate the forces in these systems in such a way as to avoid kinematic redundancies. To this end, we formulate the kinematics of the redundant reconfigurable CDPR using matrix Lie group formulation (to allow ease of formulation and subsequent generalizability). Reciprocity (and selective reciprocity) permits the development of wrench analyses including the partitioning of actuation vs structural equilibration components. The total wrench set is greatly expanded both by the addition of kinematic redundancy and selective actuation/locking of the joints. The approach adopted facilitates the holistic determination of the true wrench polytope which accounts for the wrench contributions from all actuation sources. All these aspects are examined with variants of a 4-PRPR planar cable driven parallel manipulator (with varied active/passive/locked joints). 
    more » « less
  2. To fully utilize the versatility of a multi-fingered dexterous robotic hand for executing diverse object grasps, one must consider the rich physical constraints introduced by hand-object interaction and object geometry. We propose an integrative approach of combining a generative model and a bilevel optimization (BO) to plan diverse grasp configurations on novel objects. First, a conditional variational autoencoder trained on merely six YCB objects predicts the finger placement directly from the object point cloud. The prediction is then used to seed a nonconvex BO that solves for a grasp configuration under collision, reachability, wrench closure, and friction constraints. Our method achieved an 86.7% success over 120 real world grasping trials on 20 household objects, including unseen and challenging geometries. Through quantitative empirical evaluations, we confirm that grasp configurations produced by our pipeline are indeed guaranteed to satisfy kinematic and dynamic constraints. A video summary of our results is available at youtu.be/9DTrImbN99I. 
    more » « less
  3. Robots operating in human environments must be capable of interacting with a wide variety of articulated objects such as cabinets, refrigerators, and drawers. Existing approaches require human demonstration or minutes of interaction to fit kinematic models to each novel object from scratch. We present a framework for estimating the kinematic model and configuration of previously unseen articulated objects, conditioned upon object type, from as little as a single observation. We train our system in simulation with a novel dataset of synthetic articulated objects; at runtime, our model can predict the shape and kinematic model of an object from depth sensor data. We demonstrate that our approach enables a MOVO robot to view an object with its RGB-D sensor, estimate its motion model, and use that estimate to interact with the object. 
    more » « less
  4. null (Ed.)
    As autonomous robots interact and navigate around real-world environments such as homes, it is useful to reliably identify and manipulate articulated objects, such as doors and cabinets. Many prior works in object articulation identification require manipulation of the object, either by the robot or a human. While recent works have addressed predicting articulation types from visual observations alone, they often assume prior knowledge of category-level kinematic motion models or sequence of observations where the articulated parts are moving according to their kinematic constraints. In this work, we propose FormNet, a neural network that identifies the articulation mechanisms between pairs of object parts from a single frame of an RGB-D image and segmentation masks. The network is trained on 100k synthetic images of 149 articulated objects from 6 categories. Synthetic images are rendered via a photorealistic simulator with domain randomization. Our proposed model predicts motion residual flows of object parts, and these flows are used to determine the articulation type and parameters. The network achieves an articulation type classification accuracy of 82.5% on novel object instances in trained categories. Experiments also show how this method enables generalization to novel categories and can be applied to real-world images without fine-tuning. 
    more » « less
  5. We study the axisymmetric impact of a rigid sphere onto an elastic membrane theoretically and experimentally. We derive governing equations from first principles and impose natural kinematic and geometric constraints for the coupled motion of the sphere and the membrane during contact. The free-boundary problem of finding the contact surface, over which forces caused by the collision act, is solved by an iterative method. This results in a model that produces detailed predictions of the trajectory of the sphere, the deflection of the membrane, and the pressure distribution during contact. Our model predictions are validated against our direct experimental measurements. Moreover, we identify new phenomena regarding the behaviour of the coefficient of restitution for low impact velocities, the possibility of multiple contacts during a single rebound, and energy recovery on subsequent bounces. Insight obtained from this model problem in contact mechanics can inform ongoing efforts towards the development of predictive models for contact problems that arise naturally in multiple engineering applications. 
    more » « less