The addition of geometric reconfigurability in a cable driven parallel robot (CDPR) introduces kinematic redundancies which can be exploited for manipulating structural and mechanical properties of the robot through redundancy resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can also realign its geometric arrangement to overcome the effects of cable failure and recover the original expected trajectory and complete the trajectory tracking task. In this paper we discuss a fault tolerant control (FTC) framework that relies on an Interactive Multiple Model (IMM) adaptive estimation filter for simultaneous fault detection and diagnosis (FDD) and task recovery. The redundancy resolution scheme for the kinematically redundant CDPR takes into account singularity avoidance, manipulability and wrench quality maximization during trajectory tracking. We further introduce a trajectory tracking methodology that enables the automatic task recovery algorithm to consistently return to the point of failure. This is particularly useful for applications where the planned trajectory is of greater importance than the goal positions, such as painting, welding or 3D printing applications. The proposed control framework is validated in simulation on a planar rCDPR with elastic cables and parameter uncertainties to introduce modeled and unmodeled dynamics in the system as it tracks a complete trajectory despite the occurrence of multiple cable failures. As cables fail one by one, the robot topology changes from an over-constrained to a fully constrained and then an under-constrained CDPR. The framework is applied with a constant-velocity kinematic feedforward controller which has the advantage of generating steady-state inputs despite dynamic oscillations during cable failures, as well as a Linear Quadratic Regulator (LQR) feedback controller to locally dampen these oscillations. 
                        more » 
                        « less   
                    
                            
                            Wrench Analysis of Kinematically Redundant Planar CDPRs
                        
                    
    
            A fully-constrained πβπ·ππΉ cable-driven parallel robot (CDPR) has wrench closure if there are π+1 cables exerting positive tensions spanning the wrench space. However, the quality of wrench closure is often dependent on the geometric configuration of the supporting in-parallel chains of the CDPR. The reconfigurability endowed by adding in-chain kinematic and/or actuation redundancy to a conventional cable robot could greatly improve quality of the workspace. However, the status of various joints (active, passive or locked) affect the complexity of the systematic formulation and ultimate wrench-based analysis. Past efforts have tended to equilibrate the forces in these systems in such a way as to avoid kinematic redundancies. To this end, we formulate the kinematics of the redundant reconfigurable CDPR using matrix Lie group formulation (to allow ease of formulation and subsequent generalizability). Reciprocity (and selective reciprocity) permits the development of wrench analyses including the partitioning of actuation vs structural equilibration components. The total wrench set is greatly expanded both by the addition of kinematic redundancy and selective actuation/locking of the joints. The approach adopted facilitates the holistic determination of the true wrench polytope which accounts for the wrench contributions from all actuation sources. All these aspects are examined with variants of a 4-PRPR planar cable driven parallel manipulator (with varied active/passive/locked joints). 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10280453
- Editor(s):
- Gouttefarde M.; Bruckmann T.; Pott A.
- Date Published:
- Journal Name:
- Cable-Driven Parallel Robots. CableCon 2021. Mechanisms and Machine Science
- Volume:
- 104
- Page Range / eLocation ID:
- 90-104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Parallel robots have been primarily investigated as po- tential mechanisms with stiffness modulation capabilities through the use of actuation redundancy to change internal preload. This paper investigates real-time stiffness modula- tion through the combined use of kinematic redundancy and variable stiffness actuators. A known notion of directional stiffness is used to guide the real-time geometric reconfig- uration of a parallel robot and command changes in joint- level stiffness. A weighted gradient-projection redundancy resolution approach is demonstrated for resolving kinematic redundancy while satisfying the desired directional stiffness and avoiding singularity and collision between the legs of a Gough/Stewart parallel robot with movable anchor points at its base and with variable stiffness actuators. A simulation study is carried out to delineate the effects of using kinematic redundancy with or without the use of variable stiffness ac- tuators. In addition, modulation of the entire stiffness matrix is demonstrated as an extension of the approach for modulating directional stiffness.more » « less
- 
            Cable driven parallel robots (CDPRs) are often challenging to model and to dynamically control due to the inherent flexibility and elasticity of the cables. The additional inclusion of online geometric reconfigurability to a CDPR results in a complex underdetermined system with highly non-linear dynamics. The necessary (numerical) redundancy resolution requires multiple layers of optimization rendering its application computationally prohibitive for real-time control. Here, deep reinforcement learning approaches can offer a model-free framework to overcome these challenges and can provide a real-time capable dynamic control. This study discusses three settings for a model-free DRL implementation in dynamic trajectory tracking: (i) for a standard non-redundant CDPR with a fixed workspace; (ii) in an end-to-end setting with redundancy resolution on a reconfigurable CDPR; and (iii) in a decoupled approach resolving kinematic and actuation redundancies individually.more » « less
- 
            null (Ed.)Abstract This review meta-analysis combines and compares the findings of previously published works in the field of soft wearable robots (SWRs) that provide active methods of actuation for assistive and augmentative purposes. A thorough investigation of major contributions in the field of an SWR is made to analyze trends in the field focused on fluidic and cable-driven systems, prevalent and successful approaches, and identify the future direction of SWRs and active actuation strategies. Types of soft actuators used in wearables are outlined, as well as general practices for fabrication methods of soft actuators and considerations for humanβrobot interface designs of garment-like exosuits. An overview of well-known and emerging upper body (UB)- and lower body (LB)-assistive technologies is categorized by the specific joints and degree of freedom (DoF) assisted and which actuator methodology is provided. Different use cases for SWRs are addressed, as well as implementation strategies and design applications.more » « less
- 
            Robot system models often have difficulty allowing for direct command over all input degrees of freedom if the system has a large number of imposed constraints. A snake robot with more than three links and a nonholonomic wheel on each link cannot achieve arbitrary configurations in all of its joints simultaneously. For such a system, we assume partial command over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models. Different combinations of commanded and passive joints, as well as the presence of dynamic elements such as torsional springs, can drastically change the coupling interactions and stable oscillations of the joints. We use the oscillation modes that emerge to inform feedback controllers that achieve desired overall locomotion of the robot.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    