skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Integration of Continental-scale Observations in Near-Real Time for Simulation and Analysis of Biosphere–Atmosphere Interaction
The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that assimilate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new ma- chine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are al- ready building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance.  more » « less
Award ID(s):
1822420
PAR ID:
10280920
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO 2 . EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities. 
    more » « less
  2. Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change. 
    more » « less
  3. Abstract Carbon fluxes in terrestrial ecosystems and their response to environmental change are a major source of uncertainty in the modern carbon cycle. The National Ecological Observatory Network (NEON) presents the opportunity to merge eddy covariance (EC)‐derived fluxes with CO2isotope ratio measurements to gain insights into carbon cycle processes. Collected continuously and consistently across >40 sites, NEON EC and isotope data facilitate novel integrative analyses. However, currently provisioned atmospheric isotope data are uncalibrated, greatly limiting ability to perform cross‐site analyses. Here, we present two approaches to calibrating NEON CO2isotope ratios, along with an R package to calibrate NEON data. We find that calibrating CO2isotopologues independently yields a lowerδ13C bias (<0.05‰) and higher precision (<0.40‰) than directly correctingδ13C with linear regression (bias: <0.11‰, precision: 0.42‰), but with slightly higher error and lower precision in calibrated CO2mole fraction. The magnitude of the corrections toδ13C and CO2mole fractions vary substantially by site, underscoring the need for users to apply a consistent calibration framework to data in the NEON archive. Post‐calibration data sets show that site mean annualδ13C correlates negatively with precipitation, temperature, and aridity, but positively with elevation. Forested and agricultural ecosystems exhibit larger gradients in CO2andδ13C than other sites, particularly during the summer and at night. The overview and analysis tools developed here will facilitate cross‐site analysis using NEON data, provide a model for other continental‐scale observational networks, and enable new advances leveraging the isotope ratios of specific carbon fluxes. 
    more » « less
  4. The next generation of supercomputing resources is expected to greatly expand the scope of HPC environments, both in terms of more diverse workloads and user bases, as well as the integration of edge computing infrastructures. This will likely require new mechanisms and approaches at the Operating System level to support these broader classes of workloads along with their different security requirements. We claim that a key mechanism needed for these workloads is the ability to securely compartmentalize the system software executing on a given node. In this paper, we present initial efforts in exploring the integration of secure and trusted computing capabilities into an HPC system software stack. As part of this work we have ported the Kitten Lightweight Kernel (LWK) to the ARM64 architecture and integrated it with the Hafnium hypervisor, a reference implementation of a secure partition manager (SPM) that provides security isolation for virtual machines. By integrating Kitten with Hafnium, we are able to replace the commodity oriented Linux based resource management infrastructure and reduce the overheads introduced by using a full weight kernel (FWK) as the node-level resource scheduler. While our results are very preliminary, we are able to demonstrate measurable performance improvements on small scale ARM based SOC platforms. 
    more » « less
  5. Abstract The National Ecological Observatory Network Terrestrial Observation System (NEON TOS) produces open‐access data products that allow data users to investigate the impact of change drivers on key “sentinel” taxa and soils. The spatial and temporal sampling strategy that coordinates implementation of these protocols enables integration across TOS products and with products generated by NEON aquatic, remote sensing, and terrestrial instrument subsystems. Here, we illustrate the plots and sampling units that make up the physical foundation of a NEON TOS site, and we describe the scales (subplot, plot, airshed, and site) at which sampling is spatially colocated across protocols and subsystems. We also describe how moderate resolution imaging spectroradiometer‐enhanced vegetation index (MODIS‐EVI) phenology data are used to temporally coordinate TOS sampling within and across years at the continental scale of the observatory. Individually, TOS protocols produce data products that provide insight into populations, communities, and ecosystem processes. Within the spatial and temporal framework that guides cross‐protocol implementation, the ability to draw inference across data products is enhanced. To illustrate this point, we develop an example using R software that links two TOS data products collected with different temporal frequencies at both plot and site spatial scales. A thorough understanding of how TOS protocols are integrated with each other in space and time, and with other NEON subsystems, is necessary to leverage NEON data products to maximum effect. For example, a researcher must understand the spatial and temporal scales at which soil biogeochemistry data, soil microbe biomass data, and plant litter production and chemistry data may be combined to quantify soil nutrient stocks and fluxes across NEON sites. We present clear links among TOS protocols and across NEON subsystems that will enhance the utility of NEON TOS data products for the data user community. 
    more » « less