Multistage, or serial, fusion refers to the algorithms sequentially fusing an increased number of matching results at each step and making decisions about accepting or rejecting the match hypothesis, or going to the next step. Such fusion methods are beneficial in the situations where running additional matching algorithms needed for later stages is time consuming or expensive. The construction of multistage fusion methods is challenging, since it requires both learning fusion functions and finding optimal decision thresholds for each stage. In this paper, we propose the use of single neural network for learning the multistage fusion. In addition we discuss the choices for the performance measurements of the trained algorithms and for the selection of network training optimization criteria. We perform the experiments using three face matching algorithms and IJB-A and IJB-C databases.
more »
« less
Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
In multistage manufacturing systems, modeling multiple quality indices based on the process sensing variables is important. However, the classic modeling technique predicts each quality variable one at a time, which fails to consider the correlation within or between stages. We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework according to the sequential system architecture in the MMS. Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods as well as great interpretability through developed variable selection techniques.
more »
« less
- PAR ID:
- 10291550
- Date Published:
- Journal Name:
- Journal of Quality Technology
- ISSN:
- 0022-4065
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Smart manufacturing, which integrates a multi-sensing system with physical manufacturing processes, has been widely adopted in the industry to support online and real-time decision making to improve manufacturing quality. A multi-sensing system for each specific manufacturing process can efficiently collect the in situ process variables from different sensor modalities to reflect the process variations in real-time. However, in practice, we usually do not have enough budget to equip too many sensors in each manufacturing process due to the cost consideration. Moreover, it is also important to better interpret the relationship between the sensing modalities and the quality variables based on the model. Therefore, it is necessary to model the quality-process relationship by selecting the most relevant sensor modalities with the specific quality measurement from the multi-modal sensing system in smart manufacturing. In this research, we adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor modalities and improve the modeling accuracy in quality-process modeling via functional norms that characterize the overall effects of individual modalities. The significance of sensor modalities can be used to determine the sensor placement strategy in smart manufacturing. Moreover, the selected modalities can better interpret the quality-process model by identifying the most correlated root cause of quality variations. The merits of the proposed model are illustrated by both simulations and a real case study in an additive manufacturing (i.e., fused deposition modeling) process.more » « less
-
Abstract In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations of DRR- and DRO-MSIPs by presenting multistage stochastic disjunctive programs and algorithms for solving them. These frameworks are useful for optimization problems under uncertainty where the focus is on analyzing outcomes based on multiple decision-makers’ differing perspectives, such as interdiction problems that are attacker-defender games having non-cooperative players. To assess the performance of the algorithms for DRR- and DRO-MSIPs, we consider instances of distributionally ambiguous multistage maximum flow and facility location interdiction problems that are important in their own right. Based on our computational results, we observe that the cutting plane-based approaches are 2800% and 2410% (on average) faster than the reformulation-based approaches for the foregoing instances with distributional risk-aversion and risk-receptiveness, respectively. Additionally, we conducted out-of-sample tests to showcase the significance of the DRR framework in revealing network vulnerabilities and also in mitigating the impact of data corruption.more » « less
-
We propose a multistage multiscale linear stochastic model to optimize electricity generation, storage, and transmission investments over a long planning horizon. The multiscale structure captures ‘large-scale’ uncertainties, such as investment and fuel-cost changes and long-run demand-growth rates, and ‘small-scale’ uncertainties, such as hour-to-hour demand and renewable-availability uncertainty. The model also includes a detailed treatment of operating periods so that the effect of dispatch decisions on long-term investments are captured. The proposed model can be large in size. The progressive hedging algorithm is applied to decompose the model by scenario, greatly reducing computation times. We also derive bounds on the optimal objective-function value, to assess solution quality. We use a case study based on the state of Texas to demonstrate the model and show the benefits of its detailed representation of the operating periods in making investment decisions.more » « less
-
Multi-principal element alloys (MPEAs) with remarkable performances possess great potential as structural, functional, and smart materials. However, their efficient performance-orientated design in a wide range of compositions and types is an extremely challenging issue, because of properties strongly dependent upon the composition and composition-dominated microstructure. Here, we propose a multistage-design approach integrating machine learning, physical laws and a mathematical model for developing the desired-property MPEAs in a very time-efficient way. Compared to the existing physical model- or machine-learning-assisted material development, the forward-and-inverse problems, including identifying the target property and unearthing the optimal composition, can be tackled with better efficiency and higher accuracy using our proposed avenue, which defeats the one-step component-performance design strategy by multistage-design coupling constraints. Furthermore, we developed a new multi-phase MPEA at the minimal time and cost, whose high strength-ductility synergy exceeded those of its system and subsystem reported so far by searching for the optimal combination of phase fraction and composition. The present work suggests that the property-guided composition and microstructure are precisely tailored through the newly built approach with significant reductions of the development period and cost, which is readily extendable to other multi-principal element materials.more » « less
An official website of the United States government

