The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL −1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL −1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested ( N = 15, with known Ct) were statistically different ( p < 0.001) from signals for negative clinical samples ( N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.
more »
« less
Protein-based lateral flow assays for COVID-19 detection
Abstract To combat the enduring and dangerous spread of COVID-19, many innovations to rapid diagnostics have been developed based on proteinprotein interactions of the SARS-CoV-2 spike and nucleocapsid proteins to increase testing accessibility. These antigen tests have most prominently been developed using the lateral flow assay (LFA) test platform which has the benefit of administration at point-of-care, delivering quick results, lower cost, and does not require skilled personnel. However, they have gained criticism for an inferior sensitivity. In the last year, much attention has been given to creating a rapid LFA test for detection of COVID-19 antigens that can address its high limit of detection while retaining the advantages of rapid antibodyantigen interaction. In this review, a summary of these proteinprotein interactions as well as the challenges, benefits, and recent improvements to protein based LFA for detection of COVID-19 are discussed.
more »
« less
- PAR ID:
- 10281588
- Date Published:
- Journal Name:
- Protein Engineering, Design and Selection
- Volume:
- 34
- ISSN:
- 1741-0126
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The coronavirus disease 2019 (COVID-19) is a highly contagious and fatal disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In general, the diagnostic tests for COVID-19 are based on the detection of nucleic acid, antibodies, and protein. Among different analytes, the gold standard of the COVID-19 test is the viral nucleic acid detection performed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. However, the gold standard test is time-consuming and requires expensive instrumentation, as well as trained personnel. Herein, we report an ultrasensitive electrochemical biosensor based on zinc sulfide/graphene (ZnS/graphene) nanocomposite for rapid and direct nucleic acid detection of SARS-CoV-2. We demonstrated a simple one-step route for manufacturing ZnS/graphene by employing an ultrafast (90 s) microwave-based non-equilibrium heating approach. The biosensor assay involves the hybridization of target DNA or RNA samples with probes that are immersed into a redox active electrolyte, which are detectable by electrochemical measurements. In this study, we have performed the tests for synthetic DNA samples and, SARS-CoV-2 standard samples. Experimental results revealed that the proposed biosensor could detect low concentrations of all different SARS-CoV-2 samples, using such as S, ORF 1a, and ORF 1b gene sequences as targets. This microwave-synthesized ZnS/graphene-based biosensor could be reliably used as an on-site, real-time, and rapid diagnostic test for COVID-19.more » « less
-
Serology and molecular tests are the two most commonly used methods for rapid COVID-19 infection testing. The two types of tests have different mechanisms to detect infection, by measuring the presence of viral SARS-CoV-2 RNA (molecular test) or detecting the presence of antibodies triggered by the SARS-CoV-2 virus (serology test). A handful of studies have shown that symptoms, combined with demographic and/or diagnosis features, can be helpful for the prediction of COVID-19 test outcomes. However, due to nature of the test, serology and molecular tests vary significantly. There is no existing study on the correlation between serology and molecular tests, and what type of symptoms are the key factors indicating the COVID-19 positive tests. In this study, we propose a machine learning based approach to study serology and molecular tests, and use features to predict test outcomes. A total of 2,467 donors, each tested using one or multiple types of COVID-19 tests, are collected as our testbed. By cross checking test types and results, we study correlation between serology and molecular tests. For test outcome prediction, we label 2,467 donors as positive or negative, by using their serology or molecular test results, and create symptom features to represent each donor for learning. Because COVID-19 produces a wide range of symptoms and the data collection process is essentially error prone, we group similar symptoms into bins. This decreases the feature space and sparsity. Using binned symptoms, combined with demographic features, we train five classification algorithms to predict COVID-19 test results. Experiments show that XGBoost achieves the best performance with 76.85% accuracy and 81.4% AUC scores, demonstrating that symptoms are indeed helpful for predicting COVID-19 test outcomes. Our study investigates the relationship between serology and molecular tests, identifies meaningful symptom features associated with COVID-19 infection, and also provides a way for rapid screening and cost effective detection of COVID-19 infection.more » « less
-
The global COVID-19 pandemic has strained healthcare systems and highlighted the need for accessible and efficient diagnostic methods. Traditional diagnostic tools, such as nasal swabs and biosensors, while accurate, pose significant logistical challenges and high costs, limiting their scalability. This paper explores an alternative, non-invasive approach to COVID-19 detection using machine learning algorithms to analyze vocal patterns, particularly cough and breathing sounds. Leveraging a publicly available dataset, we developed machine learning models capable of classifying audio samples as COVID-19 positive or negative. Our models achieve an AUC of up to 85% and an F1- score of 81%, demonstrating the potential of machine learning in enabling rapid, cost-effective COVID-19 diagnosis. These findings suggest that audio-based diagnostics could be a practical and scalable solution, particularly in resource-limited settings where traditional methods are less feasible.more » « less
-
null (Ed.)The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease. In this regard, a growing number of studies are investigating the capability of deep learning for early diagnosis of COVID-19. Computed tomography (CT) scans have shown distinctive features and higher sensitivity compared to other diagnostic tests, in particular the current gold standard, i.e., the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-based algorithms are mainly developed based on Convolutional Neural Networks (CNNs) to identify COVID-19 pneumonia cases. CNNs, however, require extensive data augmentation and large datasets to identify detailed spatial relations between image instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level predictions to patient-level ones using a simple thresholding mechanism or rely on a sophisticated infection segmentation to identify the disease. In this paper, we propose a two-stage fully automated CT-based framework for identification of COVID-19 positive cases referred to as the “COVID-FACT”. COVID-FACT utilizes Capsule Networks, as its main building blocks and is, therefore, capable of capturing spatial information. In particular, to make the proposed COVID-FACT independent from sophisticated segmentations of the area of infection, slices demonstrating infection are detected at the first stage and the second stage is responsible for classifying patients into COVID and non-COVID cases. COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT achieves an accuracy of 90.82 % , a sensitivity of 94.55 % , a specificity of 86.04 % , and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation, in comparison to its counterparts.more » « less
An official website of the United States government

