skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency Regulation with Heterogeneous Energy Resources: A Realization using Distributed Control
This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. A series of tests involved up to 69 heterogeneous active distributed energy resources consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive distributed energy resources consisting of building loads and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. Actuation commands for the distributed energy resources are obtained by solving a power allocation problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem formulation minimizes the sum of distributed energy resource costs while tracking the aggregate setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal over 40 min time horizons. An economic benefit analysis confirms eligibility to participate in an ancillary services market and demonstrates up to $53k of potential annual revenue for the selected population of distributed energy resources.  more » « less
Award ID(s):
1947050
PAR ID:
10281619
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Smart Grid
ISSN:
1949-3053
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an experimental demonstration of a novel real-time Energy Management System (EMS) for inverter-based microgrids to achieve optimal economic operation using a simple dynamic algorithm without offline optimization process requirements. The dynamic algorithm solves the economic dispatch problem offering an adequate stability performance and an optimal power reference tracking under sudden load and generation changes. Convergence, optimality and frequency regulation properties of the real-time EMS are shown, and the effectiveness and compatibility with inner and primary controllers are validated in experiments, showing better performance on optimal power tracking and frequency regulation than conventional droop control power sharing techniques. 
    more » « less
  2. There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains. 
    more » « less
  3. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  4. This paper examines the problem of real-time optimization of networked systems and develops online algorithms that steer the system towards the optimal trajectory without explicit knowledge of the system model. The problem is modeled as a dynamic optimization problem with time-varying performance objectives and engineering constraints. The design of the algorithms leverages the online zero-order primal-dual projected-gradient method. In particular, the primal step that involves the gradient of the objective function (and hence requires a networked systems model) is replaced by its zero-order approximation with two function evaluations using a deterministic perturbation signal. The evaluations are performed using the measurements of the system output, hence giving rise to a feedback interconnection, with the optimization algorithm serving as a feedback controller. The paper provides some insights on the stability and tracking properties of this interconnection. Finally, the paper applies this methodology to a real-time optimal power flow problem in power systems, and shows its efficacy on the IEEE 37-node distribution test feeder for reference power tracking and voltage regulation. 
    more » « less
  5. The decline of conventional synchronous generators in the modern power system is driven by the increasing demand for low-inertia/inertia-less renewable energy sources (RES), consequently leading to the growing integration of inverter-based resources (IBRs) into the power system. The incorporation of low-inertia/inertia-less IBRs makes the monitoring and damping of low-frequency electromechanical oscillations (EMOs) crucial. While Virtual Synchronous Generator (VSG) control introduces virtual inertia into the power system, it does not maximize energy capture from RES as effectively as maximum power point tracking (MPPT) does, as it should maintain a power reserve to provide the inertial support and damping. In this study, switching IBRs between MPPT and VSG controls based on an EMO index (EMOI) threshold is proposed to mitigate the emergence of EMO. The impact of the switching control of IBRs is illustrated for a modified two-area, four-machine power system with two large solar photovoltaic plants. Typical results are presented from a simulation on real-time digital simulator (RTDS) to show improved EMOI. 
    more » « less