skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural semi-Markov CRF for Monolingual Word Alignment
Monolingual word alignment is important for studying fine-grained editing operations (i.e., deletion, addition, and substitution) in text-to-text generation tasks, such as paraphrase generation, text simplification, neutralizing biased language, etc. In this paper, we present a novel neural semi-Markov CRF alignment model, which unifies word and phrase alignments through variable-length spans. We also create a new benchmark with human annotations that cover four different text genres to evaluate monolingual word alignment models in more realistic settings. Experimental results show that our proposed model outperforms all previous approaches for monolingual word alignment as well as a competitive QA-based baseline, which was previously only applied to bilingual data. Our model demonstrates good generalizability to three out-of-domain datasets and shows great utility in two downstream applications: automatic text simplification and sentence pair classification tasks.  more » « less
Award ID(s):
2038457 2055699 1822754
PAR ID:
10281832
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
Volume:
Volume 1: Long Papers
Page Range / eLocation ID:
6815 to 6828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent rapid development in Natural Language Processing (NLP) has greatly en- hanced the effectiveness of Intelligent Tutoring Systems (ITS) as tools for healthcare education. These systems hold the potential to improve health-related quality of life (HRQoL) outcomes, especially for populations with limited English reading and writing skills. However, despite the progress in pre-trained multilingual NLP models, there exists a noticeable research gap when it comes to code-switching within the medical context. Code-switching is a prevalent phenomenon in multilingual communities where individuals seamlessly transition between languages during conversations. This presents a distinctive challenge for healthcare ITS aimed at serving multilin- gual communities, as it demands a thorough understanding of and accurate adaptation to code- switching, which has thus far received limited attention in research. The hypothesis of our work asserts that the development of an ITS for healthcare education, culturally appropriate to the Hispanic population with frequent code-switching practices, is both achievable and pragmatic. Given that text classification is a core problem to many tasks in ITS, like sentiment analysis, topic classification, and smart replies, we target text classification as the application domain to validate our hypothesis. Our model relies on pre-trained word embeddings to offer rich representations for understand- ing code-switching medical contexts. However, training such word embeddings, especially within the medical domain, poses a significant challenge due to limited training corpora. In our approach to address this challenge, we identify distinct English and Spanish embeddings, each trained on medical corpora, and subsequently merge them into a unified vector space via space transforma- tion. In our study, we demonstrate that singular value decomposition (SVD) can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single meta-embedding. As an example, we assessed the similarity between the words “cat” and “gato” both before and after alignment, utilizing the cosine similarity metric. Prior to alignment, these words exhibited a similarity score of 0.52, whereas after alignment, the similarity score increased to 0.64. This example illustrates that aligning the word vectors in a meta-embedding enhances the similarity between these words, which share the same meaning in their respective languages. To assess the quality of the representations in our meta-embedding in the context of code-switching, we employed a neural network to conduct text classification tasks on code-switching datasets. Our results demonstrate that, compared to pre-trained multilingual models, our model can achieve high performance in text classification tasks while utilizing significantly fewer parameters. 
    more » « less
  2. Automated text simplification, a technique useful for making text more accessible to people such as children and emergent bilinguals, is often thought of as a monolingual translation task from complex sentences to simplified sentences using encoder-decoder models. This view fails to account for elaborative simplification, where new information is added into the simplified text. This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework, providing a robust way to investigate what writers elaborate upon, how they elaborate, and how elaborations fit into the discourse context by viewing elaborations as explicit answers to implicit questions. We introduce ELABQUD, consisting of 1.3K elaborations accompanied with implicit QUDs, to study these phenomena. We show that explicitly modeling QUD (via question generation) not only provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse, but also substantially improves the quality of elaboration generation. 
    more » « less
  3. Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks. 
    more » « less
  4. Automated text simplification aims to produce simple versions of complex texts. This task is especially useful in the medical domain, where the latest medical findings are typically communicated via complex and technical articles. This creates barriers for laypeople seeking access to up-to-date medical findings, consequently impeding progress on health literacy. Most existing work on medical text simplification has focused on monolingual settings, with the result that such evidence would be available only in just one language (most often, English). This work addresses this limitation via multilingual simplification, i.e., directly simplifying complex texts into simplified texts in multiple languages. We introduce MultiCochrane, the first sentence-aligned multilingual text simplification dataset for the medical domain in four languages: English, Spanish, French, and Farsi. We evaluate fine-tuned and zero-shot models across these languages with extensive human assessments and analyses. Although models can generate viable simplified texts, we identify several outstanding challenges that this dataset might be used to address. 
    more » « less
  5. null (Ed.)
    Textual explanations have proved to help improve user satisfaction on machine-made recommendations. However, current mainstream solutions loosely connect the learning of explanation with the learning of recommendation: for example, they are often separately modeled as rating prediction and content generation tasks. In this work, we propose to strengthen their connection by enforcing the idea of sentiment alignment between a recommendation and its corresponding explanation. At training time, the two learning tasks are joined by a latent sentiment vector, which is encoded by the recommendation module and used to make word choices for explanation generation. At both training and inference time, the explanation module is required to generate explanation text that matches sentiment predicted by the recommendation module. Extensive experiments demonstrate our solution outperforms a rich set of baselines in both recommendation and explanation tasks, especially on the improved quality of its generated explanations. More importantly, our user studies confirm our generated explanations help users better recognize the differences between recommended items and understand why an item is recommended. 
    more » « less