skip to main content

Title: Combining Nuclear and Mitochondrial Loci Provides Phylogenetic Information in the Philopterus Complex of Lice (Psocodea: Ischnocera: Philopteridae)
Abstract The Philopterus Complex includes several lineages of lice that occur on birds. The complex includes the genera Philopterus (Nitzsch, 1818; Psocodea: Philopteridae), Philopteroides (Mey, 2004; Psocodea: Philopteridae), and many other lineages that have sometimes been regarded as separate genera. Only a few studies have investigated the phylogeny of this complex, all of which are based on morphological data. Here we evaluate the utility of nuclear and mitochondrial loci for recovering the phylogeny within this group. We obtained phylogenetic trees from 39 samples of the Philopterus Complex (Psocodea: Philopteridae), using sequences of two nuclear (hyp and TMEDE6) and one mitochondrial (COI) marker. We evaluated trees derived from these genes individually as well as from concatenated sequences. All trees show 20 clearly demarcated taxa (i.e., putative species) divided into five well-supported clades. Percent sequence divergence between putative species (~5–30%) for the COI gene tended to be much higher than those for the nuclear genes (~1–15%), as expected. In cases where species are described, the lineages identified based on molecular divergence correspond to morphologically defined species. In some cases, species that are host generalists exhibit additional underlying genetic variation and such cases need to be explored by further future taxonomic revisions of more » the Philopterus Complex. « less
Authors:
; ; ; ;
Editors:
Wilkerson, Richard
Award ID(s):
1925487
Publication Date:
NSF-PAR ID:
10281903
Journal Name:
Journal of Medical Entomology
ISSN:
0022-2585
Sponsoring Org:
National Science Foundation
More Like this
  1. Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for futuremore »studies of the group.

    « less
  2. Dutra, Walderez O. (Ed.)
    More than 100 years since the first description of Chagas Disease and with over 29,000 new cases annually due to vector transmission (in 2010), American Trypanosomiasis remains a Neglected Tropical Disease (NTD). This study presents the most comprehensive Trypanosoma cruzi sampling in terms of geographic locations and triatomine species analyzed to date and includes both nuclear and mitochondrial genomes. This addresses the gap of information from North and Central America. We incorporate new and previously published DNA sequence data from two mitochondrial genes, Cytochrome oxidase II (COII) and NADH dehydrogenase subunit 1 (ND1). These T . cruzi samples were collected over a broad geographic range including 111 parasite DNA samples extracted from triatomines newly collected across North and Central America, all of which were infected with T . cruzi in their natural environment. In addition, we present parasite reduced representation (Restriction site Associated DNA markers, RAD-tag) genomic nuclear data combined with the mitochondrial gene sequences for a subset of the triatomines (27 specimens) collected from Guatemala and El Salvador. Our mitochondrial phylogenetic reconstruction revealed two of the major mitochondrial lineages circulating across North and Central America, as well as the first ever mitochondrial data for TcBat from a triatomine collectedmore »in Central America. Our data also show that within mtTcIII, North and Central America represent an independent, distinct clade from South America, named here as mtTcIII NA-CA , geographically restricted to North and Central America. Lastly, the most frequent lineage detected across North and Central America, mtTcI, was also an independent, distinct clade from South America, noted as mtTcI NA-CA . Furthermore, nuclear genome data based on Single Nucleotide Polymorphism (SNP) showed genetic structure of lineage TcI from specimens collected in Guatemala and El Salvador supporting the hypothesis that genetic diversity at a local scale has a geographical component. Our multiscale analysis contributes to the understanding of the independent and distinct evolution of T . cruzi lineages in North and Central America regions.« less
  3. Abstract

    The typical owl family (Strigidae) comprises 194 species in 28 genera, 14 of which are monotypic. Relationships within and among genera in the typical owls have been challenging to discern because mitochondrial data have produced equivocal results and because many monotypic genera have been omitted from previous molecular analyses. Here, we collected and analyzed DNA sequences of ultraconserved elements (UCEs) from 43 species of typical owls to produce concatenated and multispecies coalescent-based phylogenetic hypotheses for all but one genus in the typical owl family. Our results reveal extensive paraphyly of taxonomic groups across phylogenies inferred using different analytical approaches and suggest the genera Athene, Otus, Asio, Megascops, Bubo, and Strix are paraphyletic, whereas Ninox and Glaucidium are polyphyletic. Secondary analyses of protein-coding mitochondrial genes harvested from off-target sequencing reads and mitochondrial genomes downloaded from GenBank generally support the extent of paraphyly we observe, although some disagreements exist at higher taxonomic levels between our nuclear and mitochondrial phylogenetic hypotheses. Overall, our results demonstrate the importance of taxon sampling for understanding and describing evolutionary relationships in this group, as well as the need for additional sampling, study, and taxonomic revision of typical owl species. Additionally, our findings highlight how both divergencemore »and convergence in morphological characters have obscured our understanding of the evolutionary history of typical owls, particularly those with insular distributions.

    « less
  4. Aguirre, Windsor E. (Ed.)
    The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory.more »Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes.« less
  5. Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères & Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères & Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe , utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V “Nautilus”); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V “Western Flyer”) and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V “Melville”). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch & Rouse, sp. nov. , type locality Pescadero Basin in the Gulf of California, Mexico (R/V “Western Flyer”); Peinaleopolynoemore »elvisi Hatch & Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch & Rouse, sp. nov. , both with a type locality in Monterey Canyon off California (R/V “Western Flyer”) and Peinaleopolynoe mineoi Hatch & Rouse, sp. nov. from Costa Rica methane seeps (R/V “Falkor”). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12–15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe , Branchinotogluma , Bathykurila , Branchiplicatus , Lepidonotopodium , Levensteiniella Pettibone, 1985, Thermopolynoe , and Peinaleopolynoe .« less