skip to main content

Title: Assessing and applying students’ understanding of the scientific practices and crosscutting concepts
The Model-Evidence-Link (MEL) and build-a MEL (baMEL) tasks are designed to engage students in scientific practices, including argumentation and critical thinking. We designed a rubric for teachers to assess the various practices and skills students use while completing a MEL or baMEL, based on several NGSS Science and Engineering Practices (SEPs) and Cross Cutting Concepts (CCCs). When applying this rubric, we suggest that teachers only focus on student performance with respect to one SEP or CCC each time they implement a MEL or baMEL. We also developed a transfer task to ascertain how well students are able to perform MEL-related thinking skills, such as identifying a scientific model and alternative (but non-scientific) models, lines of evidence, and plausibility of knowledge claims, in a grade appropriate scientific journal article. The near-transfer activity can help teachers gauge how well students apply their MEL/baMEL skills and can improve students’ scientific literacy.
; ;
Award ID(s):
Publication Date:
Journal Name:
The Earth scientist
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. It is a pleasure to present the second special issue of The Earth Scientist sponsored by the MEL Project team (! The Model-Evidence Link (MEL) and MEL2 projects have been sponsored by the National Science Foundation (Grant Nos. 1316057, 1721041, and 2027376) to Temple University and the University of Maryland, in partnership with the University of North Georgia, TERC, and the Planetary Science Institute. In 2016 we shared with you the four MEL diagram activities, covering the topics of climate change, the formation of the Moon, fracking and earthquakes, and wetlands use, as well as a rubric for assessment. This issue brings to you our four new build-a-MEL activities on the origins of the Universe, fossils and Earth’s past, freshwater resources, and extreme weather. Additionally, there are articles about a new NGSS-aligned rubric and transfer task to help students apply their new skills in other situations and about teaching with MEL and build-a-MEL activities. Our goals with all of these activities are to help students learn Earth science content by engaging in scientific practices, notably the evaluation of alternative explanatory models (by looking at the connections between lines of evidence and the competing models) and argumentation. The team has testedmore »these activities in multiple middle and high school classrooms. Our research has shown the activities to be effective in learning both content and skills, and our partner teachers report that students enjoy the activities. These activities are freely available for teachers to use. We hope that you and your students will also find them to be effective and enjoyable approaches to learning about complex and sometimes controversial socioscientific issues within Earth Science.« less
  2. Abstract

    This paper shares findings from a teacher designed physics and computing unit that engaged students in learning physics and computing concurrently thru inquiry. Using scientific inquiry skills and practices, students were tasked with assessing the validity of local rollercoaster g-force ratings as posted to the public. Students used computational electronic textile circuits (e-textiles) to engage in “myth busting” amusement park g-force ratings. In doing so, students engaged computing and computational thinking skills in service to answering their scientific inquiry. Findings from this study indicate that physics classes are ideal spaces for engaging in computing’s Big Ideas as laid out by Grover and Pea (Educational Researcher 42, 38–43, 2013) as well as the pillars of computational thinking (Wing, Communications of the ACM 49, 33–35, 2006). However, essential to this dual engagement is a need for computing content to act in service to the better acquisition of physics content within the physics classroom space. Findings indicate that the teachers’ use of e-textiles to integrate physics and computing broadened and deepened student learning by providing affordances for computational thinking within the structure of physical science inquiry.

  3. In the decades since Papert published Mindstorms (1980), computation has transformed nearly every branch of scientific practice. Accordingly, there is increasing recognition that computation and computational thinking (CT) must be a core part of STEM education in a broad range of subjects. Previous work has demonstrated the efficacy of incorporating computation into STEM courses and introduced a taxonomy of CT practices in STEM. However, this work rarely involved teachers as more than implementers of units designed by researchers. In The Children’s Machine, Papert asked “What can be done to mobilize the potential force for change inherent in the position of teachers?” (Papert, 1994, pg. 79). We argue that involving teachers as co-design partners supports them to be cultural change agents in education. We report here on the first phase of a research project in which we worked with STEM educators to co-design curricular science units that incorporate computational thinking and practices. Eight high school teachers and one university professor joined nine members of our research team for a month-long Computational Thinking Summer Institute (CTSI). The co-design process was a constructionist design and learning experience for both the teachers and researchers. We focus here on understanding the co-design process and itsmore »implications for teachers by asking: (1) How did teachers shift in their attitudes and confidence regarding CT? (2) What different co-design styles emerged and did any tensions arise? Generally, we found that teachers gained confidence and skills in CT and computational tools over the course of the summer. Only one teacher reported a decrease in confidence in one aspect of CT (computational modeling), but this seemed to result from gaining a broader and more nuanced understanding of this rich area. A range of co-design styles emerged over the summer. Some teachers chose to focus on designing the curriculum and advising on the computational tools to be used in it, while leaving the construction of those tools to their co-designers. Other teachers actively participated in constructing models and computational tools themselves. The pluralism of co-design styles allowed teachers of various comfort levels with computation to meaningfully contribute to a computationally enhanced constructionist curriculum. However, it also led to a tension for some teachers between working to finish their curriculum versus gaining experience with computational tools. In the time crunch to complete their unit during CTSI, some teachers chose to save time by working on the curriculum while their co-design partners (researchers) created the supporting computational tools. These teachers still grew in their computational sophistication, but they could not devote as much time as they wanted to their own computational learning.« less
  4. We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation ofmore »CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units.« less
  5. Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustainedmore »adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations.« less