The Binder Jetting (BJ) process is capable of producing parts at high speeds from a variety of materials, but performance is limited by defects in the final parts. An improved understanding of fundamental phenomena in the printing process is needed to understand the source of these defects. This work presents initial findings from high-speed imaging of the BJ process using synchrotron X-rays. High-speed X-ray imaging allows for direct observation of key physical mechanisms in the printing process that may introduce defects including binder droplet impact on the powder bed, powder rearrangement below and above the powder bed surface, and balling formation. Testing was performed with multiple materials and droplet spacings to compare the effect on observed phenomena. Multiple lines were printed on packed and loose powder beds to further explore factors that affect defect formation and to better simulate industrially relevant conditions.
more »
« less
Phase-Field Modeling of Wetting and Balling Dynamics in Powder Bed Fusion Process
In a powder bed fusion additive manufacturing (AM) process, the balling effect has a significant impact on the surface quality of the printing parts. Surface wetting helps the bonding between powder and substrate and the inter-particle fusion, whereas the balling effect forms large spheroidal beads around the laser beam and causes voids, discontinuities, and poor surface roughness during the printing process. To better understand the transient dynamics, a theoretical model with a simplified 2D configuration is developed to investigate the underlying fluid flow and heat transfer, phase transition, and interfacial instability along with the laser heating. We demonstrate that the degree of wetting and fast solidification counter-balance the balling effect, and the Rayleigh-Plateau flow instability plays an important role for cases with relatively low substrate wettability and high scanning rate.
more »
« less
- Award ID(s):
- 1930906
- PAR ID:
- 10282305
- Date Published:
- Journal Name:
- Physics of fluids
- Volume:
- 33
- ISSN:
- 1070-6631
- Page Range / eLocation ID:
- 042116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low–scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects.more » « less
-
This work concerns process monitoring in the laser powder bed fusion additive manufacturing process. In this work, we developed and applied a novel in-situ solution for process stability monitoring and flaw detection using acoustic emission sensing. Current process monitoring methods in laser powder bed fusion only focus on the top surface of the deposition process, using an array of sensors to capture data on a layer-by-layer basis. Common sensors used for in-situ monitoring of the laser powder bed fusion process are optical, infrared, and highspeed imaging cameras along with pyrometers and photodiodes. A critical flaw with traditional top surface monitoring methodologies is that they are unable to reliably monitor the subsurface phenomena that occur in the laser powder bed fusion process. These subsurface effects are caused by the meltpool penetrating multiple layers below the top surface, leading to the re-solidification of the microstructure and potentially generating keyhole porosity. By only monitoring the top surface of the laser powder bed fusion process, the meltpool depth aspects and effects are ignored. To overcome the limitations of current in-situ monitoring of subsurface effects, this work utilizes four passive acoustic emission sensors attached to the build plate. These acoustic emission sensors monitor the energy emissions generated from the surface-level laser material interactions. Moreover, the acoustic emission signals are capable of traveling through the previously deposited layers, through the build plate, and to the sensors. Therefore, the acoustic waveform generated by the laser can capture process phenomena ranging from the crystallographic level to the macro-scale layer level which are at the root of flaw formation inside the deposited part. Hence, acoustic emission monitoring has the ability to monitor the subsurface effects in the laser powder bed fusion process. To monitor and analyze this acoustic waveform, novel wavelet-based decomposition is combined with heterogeneous sensor fusion to not only capture the acoustic waveform in time, but also in locational space on the build plate. Locational acoustic emission data enables the ability to determine the source of the generated acoustic waveform which is advantageous when the location of flaws is desired. This extracted spatially placed acoustic waveform data is able to detect the effect of processing parameters with a statistical fidelity of 99%. The proposed locational acoustic waveform monitoring method correlates to the resulting surface roughness of manufactured samples with a fidelity of 86%. Additionally, we show that acoustic waveform monitoring detects the onset of part failure, recoater crashes, and warpage prior a priori to the actual failure point.more » « less
-
In the laser powder bed fusion additive manufacturing process, the quality of fabrications is intricately tied to the laser–matter interaction, specifically the formation of the melt pool. This study experimentally examined the intricacies of melt pool characteristics and surface topography across diverse laser powers and speeds via single-track laser scanning on a bare plate and powder bed for 316L stainless steel. The results reveal that the presence of a powder layer amplifies melt pool instability and worsens irregularities due to increased laser absorption and the introduction of uneven mass from the powder. To provide a comprehensive understanding of melt pool dynamics, a high-fidelity computational model encompassing fluid dynamics, heat transfer, vaporization, and solidification was developed. It was validated against the measured melt pool dimensions and morphology, effectively predicting conduction and keyholing modes with irregular surface features. Particularly, the model explained the forming mechanisms of a defective morphology, termed swell-undercut, at high power and speed conditions, detailing the roles of recoil pressure and liquid refilling. As an application, multiple-track simulations replicate the surface features on cubic samples under two distinct process conditions, showcasing the potential of the laser–matter interaction model for process optimization.more » « less
-
Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing.more » « less