skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “Seeing Is Believing”—In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films
Nonlinear and quantum optical devices based on periodically-poled thin film lithium niobate (PP-TFLN) have gained considerable interest lately, due to their significantly improved performance as compared to their bulk counterparts. Nevertheless, performance parameters such as conversion efficiency, minimum pump power, and spectral bandwidth strongly depend on the quality of the domain structure in these PP-TFLN samples, e.g., their homogeneity and duty cycle, as well as on the overlap and penetration depth of domains with the waveguide mode. Hence, in order to propose improved fabrication protocols, a profound quality control of domain structures is needed that allows quantifying and thoroughly analyzing these parameters. In this paper, we propose to combine a set of nanometer-to-micrometer-scale imaging techniques, i.e., piezoresponse force microscopy (PFM), second-harmonic generation (SHG), and Raman spectroscopy (RS), to access the relevant and crucial sample properties through cross-correlating these methods. Based on our findings, we designate SHG to be the best-suited standard imaging technique for this purpose, in particular when investigating the domain poling process in x-cut TFLNs. While PFM is excellently recommended for near-surface high-resolution imaging, RS provides thorough insights into stress and/or defect distributions, as associated with these domain structures. In this context, our work here indicates unexpectedly large signs for internal fields occurring in x-cut PP-TFLNs that are substantially larger as compared to previous observations in bulk LN.  more » « less
Award ID(s):
1640968
PAR ID:
10282560
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
11
Issue:
3
ISSN:
2073-4352
Page Range / eLocation ID:
288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid molecular beam epitaxy (MBE) growth of Sn-modified BaTiO3 films was realized with varying domain structures and crystal symmetries across the entire composition space. Macroscopic and microscopic structures and the crystal symmetry of these thin films were determined using a combination of optical second harmonic generation (SHG) polarimetry and scanning transmission electron microscopy (STEM). SHG polarimetry revealed a variation in the global crystal symmetry of the films from tetragonal (P4mm) to cubic (Pm3¯m) across the composition range, x = 0 to 1 in BaTi1−xSnxO3 (BTSO). STEM imaging shows that the long-range polar order observed when the Sn content is low (x = 0.09) transformed to a short-range polar order as the Sn content increased (x = 0.48). Consistent with atomic displacement measurements from STEM, the largest polarization was obtained at the lowest Sn content of x = 0.09 in Sn-modified BaTiO3 as determined by SHG. These results agree with recent bulk ceramic reports and further identify this material system as a potential replacement for Pb-containing relaxor-based thin film devices. 
    more » « less
  2. Using X-ray free-electron lasers (XFELs), it is possible to determine three-dimensional structures of nanoscale particles using single-particle imaging methods. Classification algorithms are needed to sort out the single-particle diffraction patterns from the large amount of XFEL experimental data. However, different methods often yield inconsistent results. This study compared the performance of three classification algorithms: convolutional neural network, graph cut and diffusion map manifold embedding methods. The identified single-particle diffraction data of the PR772 virus particles were assembled in the three-dimensional Fourier space for real-space model reconstruction. The comparison showed that these three classification methods lead to different datasets and subsequently result in different electron density maps of the reconstructed models. Interestingly, the common dataset selected by these three methods improved the quality of the merged diffraction volume, as well as the resolutions of the reconstructed maps. 
    more » « less
  3. Lithium niobate (LiNbO3, LN) is a ferroelectric crystal of interest for integrated photonics owing to its large second-order optical nonlinearity and the ability to impart periodic poling via an external electric field. However, on-chip device performance based on thin-film lithium niobate (TFLN) is presently limited by propagation losses arising from surface roughness and corrugations. Atomic layer etching (ALE) could potentially smooth these features and thereby increase photonic performance, but no ALE process has been reported for LN. Here, we report an isotropic ALE process for x-cut MgO-doped LN using sequential exposures of H2 and SF6/Ar plasmas. We observe an etch rate of 1.59±0.02 nm/cycle with a synergy of 96.9%. We also demonstrate that ALE can be achieved with SF6/O2 or Cl2/BCl3 plasma exposures in place of the SF6/Ar plasma step with synergies of 99.5% and 91.5%, respectively. The process is found to decrease the sidewall surface roughness of TFLN waveguides etched by physical Ar+ milling by 30% without additional wet processing. Our ALE process could be used to smooth sidewall surfaces of TFLN waveguides as a postprocessing treatment, thereby increasing the performance of TFLN nanophotonic devices and enabling new integrated photonic device capabilities. 
    more » « less
  4. Abstract Three‐dimensional (3D) X‐ray computed tomography (X‐ray CT) imaging has emerged as a nondestructive means of microstructural characterization. However, obtaining and processing high‐quality and high‐resolution images is time‐consuming and often requires high‐performance computing, particularly with a high number of projections. This work evaluates the effect of 3D X‐ray CT imaging parameters on pore connectivity and surface area quantification in sandstone samples of varied composition. Samples from Bentheimer and Torrey Buff formations are imaged via 3D X‐ray CT imaging at resolutions ranging from 1.25 to 15 μm, bin sizes 1, 2, and 4, and number of projections from 400 to 4,500. Collected images are processed and analyzed using ImageJ and MATLAB to discern petrophysical properties and the results are compared with each other and Mercury Intrusion Capillary Pressure (MICP) results. Overall, little variation in bulk porosity with changing scanning parameters is observed. However, for low resolution and projection numbers, connected porosity is lower compared to bulk porosity due to a failure to capture microfeatures. Overall, mineral surface area is observed to decrease with increasing bin size, voxel size, and projection numbers, except an observed increase with projection numbers for Torrey Buff. The Torrey Buff samples contains comparatively more clays and even the highest resolution (1.25 μm) fails to separate the micrograins, which is reflected in the pore size distribution. Identifying these variations are helpful as discrepancies in imaged pore connectivity and surface area can largely impact assessments of fluid flow and transport in reactive transport simulations informed by this data. 
    more » « less
  5. Abstract A preliminary measurement of the second‐order nonlinear optical susceptibility of symmetric, coupled, InAs/AlSb multiple quantum well (MQW) structures is acquired through optical second‐harmonic generation (SHG) at fundamental wavelength 1.55 µm. High quality crystalline MQW structures of variable thickness and corresponding bulk AlSb control samples are achieved using a digital alloy epitaxial growth technique that avoids cluster formation and phase segregation. All samples are grown in between a GaSb cap and substrate layer. To isolate SHG from the MQW (or control) layers of interest from cap and substrate contributions, a multilayer optical response matrix model is built and independently tested by accurately reproducing linear reflectivity spectra. While a simplified response matrix analysis of SHG based solely on bulk χ(2)s does not reproduce the distinct SHG responses of the two sets of samples, the inclusion of an additional interface SHG contribution leads to a successful fit of the data and implies . The results demonstrate a proof‐of‐concept quantification of χ(2)in symmetric MQWs and suggest the possibility of engineering χ(2)in these structures, particularly with the introduction of well asymmetries. 
    more » « less