skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency Scan–Based Mitigation Approach of Subsynchronous Control Interaction in Type-3 Wind Turbines
Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.  more » « less
Award ID(s):
1953213 1953198
PAR ID:
10282610
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
14
Issue:
15
ISSN:
1996-1073
Page Range / eLocation ID:
4626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generation type of power plant (e.g. steam, wind) is an important attribute in power grid and energy market studies such as bidding strategy, audit of generation mix, and accounting for load- generation matching. Recently, regional transmission organizations (RTOs) and independent system operators (ISOs) are increasingly redacting a wide range of grid and market data attributes to protect their participants’ business interests. Lack of this information can prevent important power grid research. We propose techniques to infer power plant generation types based on publicly-available market data. We develop and evaluate these techniques on data available from the Midcontinent Independent System Operator (MISO). Evaluation shows successful classification of power plants, achieving 100% precision and 99.5% recall for wind plants, and 91.7% overall accuracy. On the basis of generated power, our classification shows 100% precision and 99.8% recall for wind plants and 93.2% overall accuracy. Our ultimate goal is to generalize to a wide range of RTOs/ISOs. We explore three feature types (bid pattern, capability, and opera- tion), and evaluate their classification value for MISO. We also assess applicability to other RTOs/ISOs based on available market data. These studies inform the efficacy of the features for generation-type inference in other RTOs/ISOs. 
    more » « less
  2. An efficient strategy for maximizing the power production of a power plant is to control in a coordinated way only turbines that are aerodynamically coupled through wake effects. The implementation of such control strategy requires the knowledge of which clusters of turbines are coupled through wake interaction. In a previous study, we identified turbine clusters in real-time by evaluating the correlation among the power production signals of the turbines in the farm. In this study we reproduce the more challenging scenario with large scale variation of the wind direction. Different time windows of data needed to compute the correlation coefficients are tested and characterized in term of accuracy and promptness of the identification. 
    more » « less
  3. Real-time altitude control of airborne wind energy (AWE) systems can improve performance by allowing turbines to track favorable wind speeds across a range of operating altitudes. The current work explores the performance implications of deploying an AWE system with sensor configurations that provide different amounts of data to characterize wind speed profiles. We examine various control objectives that balance trade-offs between exploration and exploitation, and use a persistence model to generate a probabilistic wind speed forecast to inform control decisions. We assess system performance by comparing power production against baselines such as omniscient control and stationary flight. We show that with few sensors, control strategies that reward exploration are favored. We also show that with comprehensive sensing, the implications of choosing a sub-optimal control strategy decrease. This work informs and motivates the need for future research exploring online learning algorithms to characterize vertical wind speed profiles. 
    more » « less
  4. Wind turbine control via concurrent yaw misalignment and axial induction control has demonstrated potential for improving wind farm power output and mitigating structural loads. However, the complex aerodynamic interplay between these two effects requires deeper investigation. This study presents a modified blade element momentum (BEM) model that matches rotor-averaged quantities to an actuator disk model of yawed rotor induction, enabling analysis of joint yaw-induction control using realistic turbine control inputs. The BEM approach reveals that common torque control strategies such as K−Ω^2 exhibit sub-optimal performance under yawed conditions. Notably, the power-yaw and thrust-yaw sensitivities vary significantly depending on the chosen control strategy, contrary to common modeling assumptions. In the context of wind farm control, employing induction control which minimizes the thrust coefficient proves most effective at reducing wake strength for a given power output across all yaw angles. Results indicate that while yaw control deflects wakes effectively, induction control more directly influences wake velocity magnitude, underscoring their complementary effects. This study advances a fundamental understanding of turbine aerodynamic responses in yawed operation and sets the stage for modeling joint yaw and induction control in wind farms. 
    more » « less
  5. Collective wind farm flow control, where wind turbines are operated in an individually suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce wake interactions and increase farm energy production. However, existing wake models used for flow control often estimate the thrust and power of yaw-misaligned turbines using simplified empirical expressions that require expensive calibration data and do not extrapolate accurately between turbine models. The thrust, wake velocity deficit, wake deflection and power of a yawed wind turbine depend on its induced velocity. Here, we extend classical one-dimensional momentum theory to model the induction of a yaw-misaligned actuator disk. Analytical expressions for the induction, thrust, initial wake velocities and power are developed as a function of the yaw angle ( $$\gamma$$ ) and thrust coefficient. The analytical model is validated against large eddy simulations of a yawed actuator disk. Because the induction depends on the yaw and thrust coefficient, the power generated by a yawed actuator disk will always be greater than a $$\cos ^3(\gamma )$$ model suggests. The power lost due to yaw misalignment depends on the thrust coefficient. An analytical expression for the thrust coefficient that maximizes power, depending on the yaw, is developed and validated. Finally, using the developed induction model as an initial condition for a turbulent far-wake model, we demonstrate how combining wake steering and thrust (induction) control can increase array power, compared to either independent steering or induction control, due to the joint dependence of the induction on the thrust coefficient and yaw angle. 
    more » « less