skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Uniform Exponential Ergodicity of Markovian Multiclass Many-Server Queues in the Halfin–Whitt Regime
We study ergodic properties of Markovian multiclass many-server queues that are uniform over scheduling policies and the size of the system. The system is heavily loaded in the Halfin–Whitt regime, and the scheduling policies are work conserving and preemptive. We provide a unified approach via a Lyapunov function method that establishes Foster–Lyapunov equations for both the limiting diffusion and the prelimit diffusion-scaled queuing processes simultaneously. We first study the limiting controlled diffusion and show that if the spare capacity (safety staffing) parameter is positive, the diffusion is exponentially ergodic uniformly over all stationary Markov controls, and the invariant probability measures have uniform exponential tails. This result is sharp because when there is no abandonment and the spare capacity parameter is negative, the controlled diffusion is transient under any Markov control. In addition, we show that if all the abandonment rates are positive, the invariant probability measures have sub-Gaussian tails regardless whether the spare capacity parameter is positive or negative. Using these results, we proceed to establish the corresponding ergodic properties for the diffusion-scaled queuing processes. In addition to providing a simpler proof of previous results in Gamarnik and Stolyar [Gamarnik D, Stolyar AL (2012) Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime: asymptotics of the stationary distribution. Queueing Systems 71(1–2):25–51], we extend these results to multiclass models with renewal arrival processes, albeit under the assumption that the mean residual life functions are bounded. For the Markovian model with Poisson arrivals, we obtain stronger results and show that the convergence to the stationary distribution is at an exponential rate uniformly over all work-conserving stationary Markov scheduling policies.  more » « less
Award ID(s):
1715875
PAR ID:
10282622
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
46
Issue:
2
ISSN:
0364-765X
Page Range / eLocation ID:
772 to 796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the ergodic properties of a class of controlled stochastic differential equations (SDEs) driven by a-stable processes which arise as the limiting equations of multiclass queueing models in the Halfin–Whitt regime that have heavy–tailed arrival processes. When the safety staffing parameter is positive, we show that the SDEs are uniformly ergodic and enjoy a polynomial rate of convergence to the invariant probability measure in total variation, which is uniform over all stationary Markov controls resulting in a locally Lipschitz continuous drift. We also derive a matching lower bound on the rate of convergence (under no abandonment). On the other hand, when all abandonment rates are positive, we show that the SDEs are exponentially ergodic uniformly over the above-mentioned class of controls. Analogous results are obtained for Lévy–driven SDEs arising from multiclass many-server queues under asymptotically negligible service interruptions. For these equations, we show that the aforementioned ergodic properties are uniform over all stationary Markov controls. We also extend a key functional central limit theorem concerning diffusion approximations so as to make it applicable to the models studied here. 
    more » « less
  2. The property of (quasi-)reversibility of Markov chains have led to elegant characterization of steady-state distribution for complex queueing networks, e.g. celebrated Jackson networks, BCMP (Baskett, Chandi, Muntz, Palacois) and Kelly theorem. In a nutshell, despite the complicated interaction, in the steady-state, the queues in such networks exhibit independence and subsequently lead to explicit calculations of distributional properties of the queuing network that may seem impossible at the outset. The model of stochastic processing network (cf. Harrison 2000) captures variety of dynamic resource allocation problems including the flow-level networks used for modeling bandwidth sharing in the Internet, switched networks (cf. Shah, Wischik 2006) for modeling packet scheduling in the Internet router and wireless medium access, and hybrid flow-packet networks for modeling job-and-packet level scheduling in data centers. Unlike before, an appropriate resource allocation or scheduling policy is required in such networks to achieve good performance. Given the complexity, asymptotic analytic approaches such as fluid model or Lyapunov-Foster criteria to establish positive-recurrence and heavy traffic or diffusion approximation to characterize the scaled steady-state distribution became method of choice. A remarkable progress has been made along these lines over the past few decades, but there is a need for much more to match the explicit calculations in the context of reversible networks. In this work, we will present an alternative to this approach that leads to non-asymptotic, explicit characterization of steady-state distribution akin BCMP / Kelly theorems. This involves (a) identifying a "relaxation" of the given stochastic processing network in terms of an appropriate (quasi-)reversible queueing network, and (b) finding a resource allocation or scheduling policy of interest that "emulates" the "relaxed" networks within "small error". The proof is in the puddling -- we will present three examples of this program: (i) distributed scheduling in wireless network, (ii) scheduling in switched networks, and (iii) flow-packet scheduling in a data center. The notion of "baseline performance" (cf. Harrison, Mandayam, Shah, Yang 2014) will naturally emerges as a consequence of this program. We will discuss open questions pertaining multi-hop networks and computation complexity. 
    more » « less
  3. null (Ed.)
    Abstract We study ergodic properties of a class of Markov-modulated general birth–death processes under fast regime switching. The first set of results concerns the ergodic properties of the properly scaled joint Markov process with a parameter that is taken to be large. Under very weak hypotheses, we show that if the averaged process is exponentially ergodic for large values of the parameter, then the same applies to the original joint Markov process. The second set of results concerns steady-state diffusion approximations, under the assumption that the ‘averaged’ fluid limit exists. Here, we establish convergence rates for the moments of the approximating diffusion process to those of the Markov-modulated birth–death process. This is accomplished by comparing the generator of the approximating diffusion and that of the joint Markov process. We also provide several examples which demonstrate how the theory can be applied. 
    more » « less
  4. Abstract We consider discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the orbits of a general hyperbolic transformation. Specifically, we show that if the sampling function is a non-constant Hölder continuous function defined on a subshift of finite type with a fully supported ergodic measure admitting a local product structure and a fixed point, then the Lyapunov exponent is positive away from a discrete set of energies. Moreover, for sampling functions in a residual subset of the space of Hölder continuous functions, the Lyapunov exponent is positive everywhere. If we consider locally constant or globally fiber bunched sampling functions, then the Lyapuonv exponent is positive away from a finite set. Moreover, for sampling functions in an open and dense subset of the space in question, the Lyapunov exponent is uniformly positive. Our results can be applied to any subshift of finite type with ergodic measures that are equilibrium states of Hölder continuous potentials. In particular, we apply our results to Schrödinger operators defined over expanding maps on the unit circle, hyperbolic automorphisms of a finite-dimensional torus, and Markov chains. 
    more » « less
  5. New Insights into Off-line Estimation for Controlled Markov Chains Unveiled A team of researchers from Purdue and Northwestern Universities have unveiled new findings in off-line estimation for controlled Markov chains, addressing challenges in analyzing complex data generated under arbitrary dynamics. The study introduces a nonparametric estimator for transition probabilities, showcasing its robustness even in nonstationary, non-Markovian environments. The team developed precise sample complexity bounds, revealing a delicate interplay between mixing properties of the logging policy and data set size. Their analysis highlights how achieving optimal statistical risk depends on this trade-off, broadening the scope of off-line estimation under diverse conditions. Examples include ergodic and weakly ergodic chains as well as controlled chains with episodic or greedy controls. Significantly, this research confirms that the widely used estimator, which calculates state–action transition ratios, is minimax optimal, ensuring its reliability in general scenarios. This advancement paves the way for improved evaluation of stationary Markov control policies, marking a breakthrough in understanding complex off-line systems. 
    more » « less