This research studied the effect of channel roughness on micro-droplet distributions in internal minimum quantity lubrication for effective machining. Mixtures of different oils and air were flown though internal channels with simulated different roughness: as fabricated, partially threaded, and fully threaded. The airborne droplets were collected, analyzed, and compared with simulated results by computational fluid dynamics. For low-viscous lubricant, the rough channel surface helped to break large droplets in the boundary layer into smaller droplets and reintroduce them into the main downstream flow. The opposite trend was found for the higher viscous lubricant. The study also performed chemical etching to roughen selected surfaces of carbide cutting tools. The synergy of hand and ultrasonic agitation successfully roughened a carbide surface within twelve minutes. Scanning electron microscopy examination showed deep etching that removed all grinding marks on a WC–Co cutting tool surface.
more »
« less
Diamond-reinforced cutting tools using laser-based additive manufacturing
Production-volume and cost requirements currently limit machine tool manufacturers’ ability to produce application-specific tooling with traditional methods, motivating the development of innovative manufacturing technologies. To this end, we detail a manufacturing framework for the design and production of application-specific cutting tools based on industry standard tungsten carbide-cobalt (WC-Co)-based “carbide” cutting materials using additive manufacturing (AM). Herein, novel diamond-reinforced carbide structures were designed and manufactured via AM and subsequently tested in comparison to current commercial products that are traditionally-processed. The resulting diamond-reinforced composites were free from large scale cracking and maintained microstructures with multiple reinforcing phases. Diamond incorporation had a remarkable effect on the processing, microstructure, and machining performance of the WC-Co based material in comparison to a commercial carbide cutting tool of similar composition as well as the base WC-Co matrix. Detailed microstructure and phase analysis, as well as machining experiments, demonstrate the ability to exploit laser-based directed energy deposition (DED)-based AM to create multifunctional cutting tools that can be designed to meet ever-increasing manufacturing demands across many industries.
more »
« less
- Award ID(s):
- 1934230
- PAR ID:
- 10282742
- Date Published:
- Journal Name:
- Additive manufacturing
- Volume:
- 37
- ISSN:
- 2214-7810
- Page Range / eLocation ID:
- 101602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract This article is written as a tribute to Professor Frederick Fongsun Ling 1927–2014. Single-point diamond machining, a subset of a broader class of processes characterized as ultraprecision machining, is used for the creation of surfaces and components with nanometer scale surface roughnesses, and submicrometer scale geometrical form accuracies. Its initial development centered mainly on the machining of optics for energy and defense related needs. Today, diamond machining has broad applications that include the manufacture of precision freeform optics for defense and commercial applications, the structuring of surfaces for functional performance, and the creation of molds used for the replication of a broad range of components in plastic or glass. The present work focuses on a brief review of the technology. First addressed is the state of current understanding of the mechanics that govern the process including the resulting forces, energies and the size effect, forces when cutting single crystals, and resulting cutting temperatures. Efforts to model the process are then described. The workpiece material response when cutting ductile and brittle materials is also included. Then the present state of the art in machine tools, diamond tools and tool development, various cutting configurations used, and some examples of diamond machined surfaces and components are presented. A discussion on the measurement of surface topography, geometrical form, and subsurface damage of diamond machined surfaces is also included.more » « less
-
null (Ed.)Diamond grit is widely used in cutting, grinding, and polishing tools for its superior mechanical properties and performance in machining hard materials. Selective laser brazing (SLB) of diamond grits is a new additive manufacturing technique that has great potential to fabricate the next generation of high-performance diamond tools. However, fundamental understanding and quantitative analysis for the design and tuning of the SLB process and the resulting bonding efficiency are not yet established as the process is complicated by heating, fusion, wetting, solidification, grit migration, bonding, reaction, and the interplay between these effects. We present a thermodynamically consistent phase-field theoretical model for the prediction of melting and wetting of SLB on diamond grits using a powder-based additive manufacturing technique. The melting dynamics is driven by laser heating in a chamber filled with argon gas and is coupled with the motion of multiple three-phase contact lines. The relevant wetting dynamics, interfacial morphology, and temperature distribution are computationally resolved in a simplified two-dimensional (2D) configuration.more » « less
-
Additive manufacturing (AM) often results in high strength but poor ductility in titanium alloys. Hybrid AM is a solution capable of improving both ductility and strength. In this study, hybrid AM of Ti-6Al-4 V was achieved by coupling directed energy deposition with interlayer machining. The microstructure, residual stress, and microhardness were examined to explain how interlayer machining caused a 63% improvement in ductility while retaining an equivalent strength to as-printed samples. Interlayer machining introduced recurrent interruptions in printing that allowed for slow cooling-induced coarsening of acicular α laths at the machined interfaces. The coarse α laths on the selectively machined layers increased dislocation motion under tensile loads and improved bulk ductility. The results highlighted in this publication demonstrate the feasibility of hybrid AM to enhance the toughness of titanium alloys.more » « less
-
Nondestructive Evaluation of Additively Manufactured Metal Components with an Eddy Current TechniqueThe ability of Additive Manufacturing (AM) processes to ensure delivery of high quality metal-based components is somewhat limited by insufficient inspection capabilities. The inspection of AM parts presents particular challenges due to the design flexibility that the fabrication method affords. The nondestructive evaluation (NDE) methods employed need to be selected based on the material properties, type of possible defects, and geometry of the parts. Electromagnetic method, in particular Eddy Current (EC), is proposed for the inspections. This evaluation of EC inspection considers surface and near-surface defects in a stainless steel (SS) 17 4 PH additively manufactured sample and a SS 17 4 PH annealed plates manufactured traditionally (reference sample). The surfaces of the samples were polished using 1 micron polishing Alumina grit to achieve a mirror like surface finish. 1.02 mm (0.04”), 0.508 mm (0.02”) and 0.203 mm (0.008”) deep Electronic Discharge Machining (EDM) notches were created on the polished surface of the samples. Lift off and defect responses for both additive and reference samples were obtained using a VMEC-1 commercial instrument and a 500 kHz absolute probe. The inspection results as well as conductivity assessments for the AM sample in terms of the impedance plane signature were compared to response of similar features in the reference sample. Direct measurement of electromagnetic properties of the AM samples is required for precise inspection of the parts. Results show that quantitative comparison of the AM and traditional materials help for the development of EC technology for inspection of additively manufactured metal parts.more » « less