skip to main content


Title: Phase-Field Modeling of Selective Laser Brazing of Diamond Grits
Diamond grit is widely used in cutting, grinding, and polishing tools for its superior mechanical properties and performance in machining hard materials. Selective laser brazing (SLB) of diamond grits is a new additive manufacturing technique that has great potential to fabricate the next generation of high-performance diamond tools. However, fundamental understanding and quantitative analysis for the design and tuning of the SLB process and the resulting bonding efficiency are not yet established as the process is complicated by heating, fusion, wetting, solidification, grit migration, bonding, reaction, and the interplay between these effects. We present a thermodynamically consistent phase-field theoretical model for the prediction of melting and wetting of SLB on diamond grits using a powder-based additive manufacturing technique. The melting dynamics is driven by laser heating in a chamber filled with argon gas and is coupled with the motion of multiple three-phase contact lines. The relevant wetting dynamics, interfacial morphology, and temperature distribution are computationally resolved in a simplified two-dimensional (2D) configuration.  more » « less
Award ID(s):
1930906
NSF-PAR ID:
10282746
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physics of fluids
Volume:
33
Issue:
5
ISSN:
1070-6631
Page Range / eLocation ID:
052113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In a powder bed fusion additive manufacturing (AM) process, the balling effect has a significant impact on the surface quality of the printing parts. Surface wetting helps the bonding between powder and substrate and the inter-particle fusion, whereas the balling effect forms large spheroidal beads around the laser beam and causes voids, discontinuities, and poor surface roughness during the printing process. To better understand the transient dynamics, a theoretical model with a simplified 2D configuration is developed to investigate the underlying fluid flow and heat transfer, phase transition, and interfacial instability along with the laser heating. We demonstrate that the degree of wetting and fast solidification counter-balance the balling effect, and the Rayleigh-Plateau flow instability plays an important role for cases with relatively low substrate wettability and high scanning rate. 
    more » « less
  2. null (Ed.)
    Production-volume and cost requirements currently limit machine tool manufacturers’ ability to produce application-specific tooling with traditional methods, motivating the development of innovative manufacturing technologies. To this end, we detail a manufacturing framework for the design and production of application-specific cutting tools based on industry standard tungsten carbide-cobalt (WC-Co)-based “carbide” cutting materials using additive manufacturing (AM). Herein, novel diamond-reinforced carbide structures were designed and manufactured via AM and subsequently tested in comparison to current commercial products that are traditionally-processed. The resulting diamond-reinforced composites were free from large scale cracking and maintained microstructures with multiple reinforcing phases. Diamond incorporation had a remarkable effect on the processing, microstructure, and machining performance of the WC-Co based material in comparison to a commercial carbide cutting tool of similar composition as well as the base WC-Co matrix. Detailed microstructure and phase analysis, as well as machining experiments, demonstrate the ability to exploit laser-based directed energy deposition (DED)-based AM to create multifunctional cutting tools that can be designed to meet ever-increasing manufacturing demands across many industries. 
    more » « less
  3. We report a pulsed laser annealing method to convert carbon fibers and nanotubes into diamond fibers at ambient temperature and pressure in air. The conversion of carbon nanofibers and nanotubes into diamond nanofibers involves melting in a super undercooled state using nanosecond laser pulses, and quenching rapidly to convert into phase-pure diamond. The conversion process occurs at ambient temperature and pressure, and can be carried out in air. The structure of diamond fibers has been confirmed by selected-area electron diffraction in transmission electron microscopy, electron-back-scatter-diffraction in high-resolution scanning electron microscopy, all showing characteristic diffraction lines for the diamond structure. The bonding characteristics were determined by Raman spectroscopy with a strong peak near 1332 cm −1 , and high-resolution electron-energy-loss spectroscopy in transmission electron microscopy with a characteristic peak at 292 eV for σ* for sp 3 bonding and the absence of π* for sp 2 bonding. The Raman peak at 1332 cm −1 downshifts to 1321 cm −1 for diamond nanofibers due to the phonon confinement in nanodiamonds. These laser-treated carbon fibers with diamond seeds are used to grow larger diamond crystallites further by using standard hot-filament chemical vapor deposition (HFCVD). We compare these results with those obtained without laser treating the carbon fibers. The details of diamond conversion and HFCVD growth are presented in this paper. 
    more » « less
  4. One of the limitations of commercially available metal additive manufacturing (AM) processes is the minimum feature size most processes can achieve. A proposed solution to bridge this gap is microscale selective laser sintering (μ-SLS). The advent of this process creates a need for models which are able to predict the structural properties of sintered parts. While there are currently a number of good SLS models, the majority of these models predict sintering as a melting process which is accurate for microparticles. However, when particles tend to the nanoscale, sintering becomes a diffusion process dominated by grain boundary and surface diffusion between particles. As such, this paper presents an approach to model sintering by tracking the diffusion between nanoparticles on a bed scale. Phase field modeling (PFM) is used in this study to track the evolution of particles undergoing sintering. Changes in relative density are then calculated from the results of the PFM simulations. These results are compared to experimental data obtained from furnace heating done on dried copper nanoparticle inks, and the simulation constants are calibrated to match physical properties. 
    more » « less
  5. Abstract

    While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young’s modulus of approximately 200 GPa, offering one of the highest specific Young’s modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

     
    more » « less