skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near-Linear Time Homomorphism Counting in Bounded Degeneracy Graphs: The Barrier of Long Induced Cycles
Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(mlogm) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ>0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms.  more » « less
Award ID(s):
2023495
PAR ID:
10282811
Author(s) / Creator(s):
Date Published:
Journal Name:
Symposium on Discrete Algorithms (SODA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(m log m) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ > 0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms. 
    more » « less
  2. Mestre, Julián; Wirth, Anthony (Ed.)
    Counting the number of homomorphisms of a pattern graph H in a large input graph G is a fundamental problem in computer science. In many applications in databases, bioinformatics, and network science, we need more than just the total count. We wish to compute, for each vertex v of G, the number of H-homomorphisms that v participates in. This problem is referred to as homomorphism orbit counting, as it relates to the orbits of vertices of H under its automorphisms. Given the need for fast algorithms for this problem, we study when near-linear time algorithms are possible. A natural restriction is to assume that the input graph G has bounded degeneracy, a commonly observed property in modern massive networks. Can we characterize the patterns H for which homomorphism orbit counting can be done in near-linear time? We discover a dichotomy theorem that resolves this problem. For pattern H, let 𝓁 be the length of the longest induced path between any two vertices of the same orbit (under the automorphisms of H). If 𝓁 ≤ 5, then H-homomorphism orbit counting can be done in near-linear time for bounded degeneracy graphs. If 𝓁 > 5, then (assuming fine-grained complexity conjectures) there is no near-linear time algorithm for this problem. We build on existing work on dichotomy theorems for counting the total H-homomorphism count. Surprisingly, there exist (and we characterize) patterns H for which the total homomorphism count can be computed in near-linear time, but the corresponding orbit counting problem cannot be done in near-linear time. 
    more » « less
  3. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We study the classic problem of subgraph counting, where we wish to determine the number of occurrences of a fixed pattern graph H in an input graph G of n vertices. Our focus is on bounded degeneracy inputs, a rich family of graph classes that also characterizes real-world massive networks. Building on the seminal techniques introduced by Chiba-Nishizeki (SICOMP 1985), a recent line of work has built subgraph counting algorithms for bounded degeneracy graphs. Assuming fine-grained complexity conjectures, there is a complete characterization of patterns H for which linear time subgraph counting is possible. For every r ≥ 6, there exists an H with r vertices that cannot be counted in linear time. In this paper, we initiate a study of subquadratic algorithms for subgraph counting on bounded degeneracy graphs. We prove that when H has at most 9 vertices, subgraph counting can be done in Õ(n^{5/3}) time. As a secondary result, we give improved algorithms for counting cycles of length at most 10. Previously, no subquadratic algorithms were known for the above problems on bounded degeneracy graphs. Our main conceptual contribution is a framework that reduces subgraph counting in bounded degeneracy graphs to counting smaller hypergraphs in arbitrary graphs. We believe that our results will help build a general theory of subgraph counting for bounded degeneracy graphs. 
    more » « less
  4. Czumaj, Artur Dawar (Ed.)
    We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix A. Each symmetric matrix A defines a graph homomorphism function Z A (·), also known as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of Z A (·) for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric A, either Z A (G) is in polynomial time for all graphs G, or it is #P-hard for bounded degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [12] for Z A (·) also holds for simple graphs, where A is any real symmetric matrix. 
    more » « less
  5. We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost k-cycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or even linear-time algorithm for detecting a 4-cycle in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all k≥ 4, unless we can detect a triangle in √n-degree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms. 
    more » « less