Periodically poled second-order nonlinear materials with submicrometer periods are important for the development of quasi-phase matched backward-wave nonlinear optical processes. Interactions involving counter-propagating waves exhibit many unique properties and enable devices such as backward second harmonic generators, mirrorless optical parametric oscillators, and narrow-band quantum entangled photon sources. Fabrication of dense ferroelectric domain gratings in lithium niobate remains challenging, however, due to lateral domain spreading and merging. Here, we report submicrometer periodic poling of ion-sliced x-cut magnesium oxide doped lithium niobate thin films. Electric-field poling is performed using multiple bipolar preconditioning pulses that improve the poling yield and domain uniformity. The internal field is found to decrease with each preconditioning poling cycle. The poled domains are characterized by piezoresponse force microscopy. A fundamental period of 747 nm is achieved. 
                        more » 
                        « less   
                    
                            
                            Periodic Poling of X-Cut Thin-Film Lithium Niobate: The Route to Submicrometer Periods
                        
                    
    
            Ultra-short poling periods of 1 μm and below in lithium niobate will allow nonlinear optical devices with operation to the UV regime or narrow-band counter-propagating single-photon generation. However, fabrication of such periods in bulk Lithium Niobate penetrating the complete modal areas of waveguides has been challenging. In this work, we demonstrate the fabrication of periodic domain grids with submicrometer periodicity in 300 nm x-cut thin-film lithium niobate. The poling was achieved through application of a single, shaped electrical pulse and electrodes fabricated with a combination of electron-and direct laser-writing lithography. The poling results were investigated with piezo-response force microscopy and second-harmonic microcopy and indicate the poled domains to penetrate fully across the complete film thickness. This will enable the fabrication of novel nonlinear optical devices combining the high efficiency of thin films with ultra-short domain periods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1640968
- PAR ID:
- 10282995
- Date Published:
- Journal Name:
- 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Thin-film lithium niobate is an attractive integrated photonics platform due to its low optical loss and favorable optical nonlinear and electro-optic properties. However, in applications such as second harmonic generation, frequency comb generation, and microwave-to-optics conversion, the device performance is strongly impeded by the photorefractive effect inherent in thin-film lithium niobate. In this paper, we show that the dielectric cladding on a lithium niobate microring resonator has a significant influence on the photorefractive effect. By removing the dielectric cladding layer, the photorefractive effect in lithium niobate ring resonators can be effectively mitigated. Our work presents a reliable approach to control the photorefractive effect on thin-film lithium niobate and will further advance the performance of integrated classical and quantum photonic devices based on thin-film lithium niobate.more » « less
- 
            Abstract Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self-referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearities, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    