Image classifiers have become an important component of today’s software, from consumer and business applications to safety-critical domains. The advent of Deep Neural Networks (DNNs) is the key catalyst behind such wide-spread success. However, wide adoption comes with serious concerns about the robustness of software systems dependent on image classification DNNs, as several severe erroneous behaviors have been reported under sensitive and critical circumstances. We argue that developers need to rigorously test their software’s image classifiers and delay deployment until acceptable. We present an approach to testing image classifier robustness based on class property violations. We have found that many of the reported erroneous cases in popular DNN image classifiers occur because the trained models confuse one class with another or show biases towards some classes over others. These bugs usually violate some class properties of one or more of those classes. Most DNN testing techniques focus on per-image violations and thus fail to detect such class-level confusions or biases. We developed a testing approach to automatically detect class-based confusion and bias errors in DNN-driven image classification software. We evaluated our implementation, DeepInspect, on several popular image classifiers with precision up to 100% (avg. 72.6%) for confusion errors, and up to 84.3% (avg. 66.8%) for bias errors. DeepInspect found hundreds of classification mistakes in widely-used models, many of which expose errors indicating confusion or bias.
more »
« less
Testing DNN image classifiers for confusion & bias errors
We found that many of the reported erroneous cases in popular DNN image classifiers occur because the trained models confuse one class with another or show biases towards some classes over others. Most existing DNN testing techniques focus on per-image violations, so fail to detect class-level confusions or biases. We developed a testing technique to automatically detect class-based confusion and bias errors in DNN-driven image classification software. We evaluated our implementation, DeepInspect, on several popular image classifiers with precision up to 100% (avg. 72.6%) for confusion errors, and up to 84.3% (avg. 66.8%) for bias errors.
more »
« less
- PAR ID:
- 10283059
- Date Published:
- Journal Name:
- ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings
- Page Range / eLocation ID:
- 304 to 305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep neural network (DNN) classifiers are powerful tools that drive a broad spectrum of important applications, from image recognition to autonomous vehicles. Unfortunately, DNNs are known to be vulnerable to adversarial attacks that affect virtually all state-of-the-art models. These attacks make small imperceptible modifications to inputs that are sufficient to induce the DNNs to produce the wrong classification. In this paper we propose a novel, lightweight adversarial correction and/or detection mechanism for image classifiers that relies on undervolting (running a chip at a voltage that is slightly below its safe margin). We propose using controlled undervolting of the chip running the inference process in order to introduce a limited number of compute errors. We show that these errors disrupt the adversarial input in a way that can be used either to correct the classification or detect the input as adversarial. We evaluate the proposed solution in an FPGA design and through software simulation. We evaluate 10 attacks and show average detection rates of 77% and 90% on two popular DNNs.more » « less
-
Habli, Ibrahim; Sujan, Mark; Bitsch, Friedemann (Ed.)We introduce DeepCert, a tool-supported method for verifying the robustness of deep neural network (DNN) image classifiers to contextually relevant perturbations such as blur, haze, and changes in image contrast. While the robustness of DNN classifiers has been the subject of intense research in recent years, the solutions delivered by this research focus on verifying DNN robustness to small perturbations in the images being classified, with perturbation magnitude measured using established 𝐿𝑝 norms. This is useful for identifying potential adversarial attacks on DNN image classifiers, but cannot verify DNN robustness to contextually relevant image perturbations, which are typically not small when expressed with 𝐿𝑝 norms. DeepCert addresses this underexplored verification problem by supporting: (1) the encoding of real-world image perturbations; (2) the systematic evaluation of contextually relevant DNN robustness, using both testing and formal verification; (3) the generation of contextually relevant counterexamples; and, through these, (4) the selection of DNN image classifiers suitable for the operational context (i) envisaged when a potentially safety-critical system is designed, or (ii) observed by a deployed system. We demonstrate the effectiveness of DeepCert by showing how it can be used to verify the robustness of DNN image classifiers build for two benchmark datasets (‘German Traffic Sign’ and ‘CIFAR-10’) to multiple contextually relevant perturbations.more » « less
-
The ubiquity of the Internet plays a pivotal role in connecting individuals and facilitating easy access to various essential services. As of 2022, the International Telecommunication Union (ITU) reports that approximately 5.3 billion people are connected to the internet, underscoring its widespread coverage and indispensability in our daily lives. This expansive coverage enables a myriad of services, including communication, e-banking, e-commerce, online social security access, medical reporting, education, entertainment, weather information, traffic monitoring, online surveys, and more. However, this open platform also exposes vulnerabilities to malicious users who actively seek to exploit weaknesses in the virtual domain, aiming to gain credentials, financial benefits, or reveal critical information through the use of malware. This constant threat poses a serious challenge in safeguarding sensitive information in cyberspace. To address this challenge, we propose the use of ensemble and deep neural network (DNN) based machine learning (ML) techniques to detect malicious intent packets before they can infiltrate or compromise systems and applications. Attackers employ various tactics to evade existing security systems, such as antivirus or intrusion detection systems, necessitating a robust defense mechanism. Our approach involves implementing an ensemble, a collection of diverse classifiers capable of capturing different attack patterns and better generalizing from highly relevant features, thus enhancing protection against a variety of attacks compared to a single classifier. Given the highly unbalanced dataset, the ensemble classifier effectively addresses this condition, and oversampling is also employed to minimize bias toward the majority class. To prevent overfitting, we utilize Random Forest (RF) and the dropout technique in the DNN. Furthermore, we introduce a DNN to assess its ability to recognize complex attack patterns and variations compared to the ensemble approach. Various metrics, such as classification accuracy, precision, recall, F1-score, confusion matrix are utilized to measure the performance of our proposed system, with the aim of outperforming current state-of-the-art intrusion detection systems.more » « less
-
Increased social media use has contributed to the greater prevalence of abusive, rude, and offensive textual comments. Machine learning models have been developed to detect toxic comments online, yet these models tend to show biases against users with marginalized or minority identities (e.g., females and African Americans). Established research in debiasing toxicity classifiers often (1) takes a static or batch approach, assuming that all information is available and then making a one-time decision; and (2) uses a generic strategy to mitigate different biases (e.g., gender and racial biases) that assumes the biases are independent of one another. However, in real scenarios, the input typically arrives as a sequence of comments/words over time instead of all at once. Thus, decisions based on partial information must be made while additional input is arriving. Moreover, social bias is complex by nature. Each type of bias is defined within its unique context, which, consistent with intersectionality theory within the social sciences, might be correlated with the contexts of other forms of bias. In this work, we consider debiasing toxicity detection as a sequential decision-making process where different biases can be interdependent. In particular, we study debiasing toxicity detection with two aims: (1) to examine whether different biases tend to correlate with each other; and (2) to investigate how to jointly mitigate these correlated biases in an interactive manner to minimize the total amount of bias. At the core of our approach is a framework built upon theories of sequential Markov Decision Processes that seeks to maximize the prediction accuracy and minimize the bias measures tailored to individual biases. Evaluations on two benchmark datasets empirically validate the hypothesis that biases tend to be correlated and corroborate the effectiveness of the proposed sequential debiasing strategy.more » « less
An official website of the United States government

