Abstract Let 𝑋 be a Kähler manifold with semiample canonical bundle K_{X}.It is proved in [W. Jian, Y. Shi and J. Song, A remark on constant scalar curvature Kähler metrics on minimal models,Proc. Amer. Math. Soc.147(2019), 8, 3507–3513] that, for any Kähler class 𝛾, there exists \delta>0such that, for all t\in(0,\delta), there exists a unique cscK metric g_{t}in K_{X}+t\gamma.In this paper, we prove that \{(X,g_{t})\}_{t\in(0,\delta)}have uniformly bounded Kähler potentials, volume forms and diameters.As a consequence, these metric spaces are pre-compact in the Gromov–Hausdorff sense.
more »
« less
Larson–Penston Self-similar Gravitational Collapse
Abstract Using numerical integration, in 1969 Penston (Mon Not R Astr Soc 144:425–448, 1969) and Larson (Mon Not R Astr Soc 145:271–295, 1969) independently discovered a self-similar solution describing the collapse of a self-gravitating asymptotically flat fluid with the isothermal equation of state$$p=k\varrho $$ ,$$k>0$$ , and subject to Newtonian gravity. We rigorously prove the existence of such a Larson–Penston solution.
more »
« less
- Award ID(s):
- 1810868
- PAR ID:
- 10283355
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 386
- Issue:
- 3
- ISSN:
- 0010-3616
- Page Range / eLocation ID:
- p. 1551-1601
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces.more » « less
-
Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ). For all small$$\epsilon \ne 0$$ , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ at the singularity$$\{r=0\}$$ . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ , the case$$\Lambda <0$$ is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.more » « less
-
Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.more » « less
-
Abstract A search is reported for charge-parity$$CP$$ violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ . The$$CP$$ asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ decay. This is the first$$CP$$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.more » « less
An official website of the United States government
