skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Producing Ignorance Through Regulatory Structure: The Case of Per- and Polyfluoroalkyl Substances (PFAS)
This article examines how ignorance can be produced by regulatory systems. Using the case of contamination from per- and polyfluoroalkyl substances (PFAS), we identify patterns of institutionalized ignorance in U.S. chemical regulation. Drawing on in-depth interviews and archival research, we develop a chemical regulatory pathway approach to study knowledge and ignorance production through the regulatory framework, the Toxic Substances Control Act (TSCA). Investigating TSCA’s operation, we consider why PFAS were relatively recently recognized as a significant public health threat, despite evidence of their risks in the 1960s. The historical context of TSCA’s enactment, including the mobilization of the chemical industry, contributed to the institutionalization of organizational practices promoting distinct types of ignorance based on stakeholder position: chemical manufacturers who have discretion over knowledge production and dissemination, regulators who operate under selective ignorance, and communities and consumers who experience nescience, or total surprise.  more » « less
Award ID(s):
1827817
NSF-PAR ID:
10283490
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sociological Perspectives
Volume:
64
Issue:
4
ISSN:
0731-1214
Page Range / eLocation ID:
631 to 656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the “PFAS problem”: (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment. 
    more » « less
  2. Understandings of environmental governance both assume and challenge the relationship between expert knowledge and corresponding action. We explore this interplay by examining the context of knowledge production pertaining to a contested class of chemicals. Per-and polyfluorinated alkyl substances (PFASs) are widely used industrial compounds containing chemical chains of carbon and fluorine that are persistent, bioaccumulative and toxic. Although industry and regulatory scientists have studied the exposure and toxicity concerns of these compounds for decades, and several contaminated communities have documented health concerns as a result of their high levels of exposure, PFAS use remains ubiquitous in a large range of consumer and industrial products. Despite this significant history of industry knowledge production documenting exposure and toxicity concerns, the regulatory approach to PFASs has been limited. This is largely due to a regulatory framework that privileges industry incentives for rapid market entry and trade secret protection over substantive public health protection, creating areas of unseen science, research that is conducted but never shared outside of institutional boundaries. In particular, the risks of PFASs have been both structurally hidden and unexamined by existing regulatory and industry practice. This reveals the uneven pathways that construct issues of social and scientific concern.

     
    more » « less
  3. Abstract

    Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water is widely recognized as a public health concern. Decision-makers who are responsible for managing PFAS drinking water risks lack the tools to acquire the information they need. In response to this need, we provide a detailed description of a Kentucky dataset that allows decision-makers to visualize potential hot-spot areas and evaluate drinking water systems that may be susceptible to PFAS contamination. The dataset includes information extracted from publicly available sources to create five different maps in ArcGIS Online and highlights potential sources of PFAS contamination in the environment in relation to drinking water systems. As datasets of PFAS drinking water sampling continue to grow as part of evolving regulatory requirements, we used this Kentucky dataset as an example to promote the reuse of this dataset and others like it. We incorporated the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by creating a Figshare item that includes all data and associated metadata with these five ArcGIS maps.

     
    more » « less
  4. null (Ed.)
    Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources. 
    more » « less
  5. null (Ed.)
    Per- and polyfluoroalkyl substances (PFAS) are pollutants that have demonstrated a high level of environmental persistence and are very difficult to remediate. As the body of literature on their environmental effects has increased, so has regulatory and research scrutiny. The widespread usage of PFAS in industrial applications and consumer products, complicated by their environmental release, mobility, fate, and transport, have resulted in multiple exposure routes for humans. Furthermore, low screening levels and stringent regulatory standards that vary by state introduce considerable uncertainty and potential costs in the environmental management of PFAS. The recalcitrant nature of PFAS render their removal difficult, but existing and emerging technologies can be leveraged to destroy or sequester PFAS in a variety of environmental matrices. Additionally, new research on PFAS remediation technologies has emerged to address the efficiency, costs, and other shortcomings of existing remediation methods. Further research on the impact of field parameters such as secondary water quality effects, the presence of co-contaminants and emerging PFAS, reaction mechanisms, defluorination yields, and the decomposition products of treatment technologies is needed to fully evaluate these emerging technologies, and industry attention should focus on treatment train approaches to improve efficiency and reduce the cost of treatment. 
    more » « less