skip to main content


Title: Producing Ignorance Through Regulatory Structure: The Case of Per- and Polyfluoroalkyl Substances (PFAS)
This article examines how ignorance can be produced by regulatory systems. Using the case of contamination from per- and polyfluoroalkyl substances (PFAS), we identify patterns of institutionalized ignorance in U.S. chemical regulation. Drawing on in-depth interviews and archival research, we develop a chemical regulatory pathway approach to study knowledge and ignorance production through the regulatory framework, the Toxic Substances Control Act (TSCA). Investigating TSCA’s operation, we consider why PFAS were relatively recently recognized as a significant public health threat, despite evidence of their risks in the 1960s. The historical context of TSCA’s enactment, including the mobilization of the chemical industry, contributed to the institutionalization of organizational practices promoting distinct types of ignorance based on stakeholder position: chemical manufacturers who have discretion over knowledge production and dissemination, regulators who operate under selective ignorance, and communities and consumers who experience nescience, or total surprise.  more » « less
Award ID(s):
1827817
NSF-PAR ID:
10283490
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sociological Perspectives
Volume:
64
Issue:
4
ISSN:
0731-1214
Page Range / eLocation ID:
631 to 656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the “PFAS problem”: (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment. 
    more » « less
  2. Abstract

    Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water is widely recognized as a public health concern. Decision-makers who are responsible for managing PFAS drinking water risks lack the tools to acquire the information they need. In response to this need, we provide a detailed description of a Kentucky dataset that allows decision-makers to visualize potential hot-spot areas and evaluate drinking water systems that may be susceptible to PFAS contamination. The dataset includes information extracted from publicly available sources to create five different maps in ArcGIS Online and highlights potential sources of PFAS contamination in the environment in relation to drinking water systems. As datasets of PFAS drinking water sampling continue to grow as part of evolving regulatory requirements, we used this Kentucky dataset as an example to promote the reuse of this dataset and others like it. We incorporated the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by creating a Figshare item that includes all data and associated metadata with these five ArcGIS maps.

     
    more » « less
  3. Abstract

    The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS-containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.

     
    more » « less
  4. When the Toxic Substances Control Act (TSCA) was passed by the US Congress in 1976, its advocates pointed to new generation of genotoxicity tests as a way to systematically screen chemicals for carcinogenicity. However, in the end, TSCA did not require any new testing of commercial chemicals, including these rapid laboratory screens. In addition, although the Environmental Protection Agency was to make public data about the health effects of industrial chemicals, companies routinely used the agency’s obligation to protect confidential business information to prevent such disclosures. This paper traces the contested history of TSCA and its provisions for testing, from the circulation of the first draft bill in the Nixon administration through the debates over its implementation, which stretched into the Reagan administration. The paucity of publicly available health and environmental data concerning chemicals, I argue, was a by-product of the law and its execution, leading to a situation of institutionalized ignorance, the underside of regulatory knowledge. 
    more » « less
  5. Abstract

    As health‐based drinking water standards for per‐ and polyfluorinated alkyl substances (PFAS) continue to evolve, public health and environmental protection decision‐makers must assess exposure risks associated with all public drinking water systems in the United States (US). Unfortunately, current knowledge regarding the presence of PFAS in environmental systems is limited. In this study, a screening approach was established to: (1) identify and direct attention toward potential PFAS hot spots in drinking water sources, (2) prioritize sampling locations, and (3) provide insights regarding the potential PFAS sources that contaminate groundwater and surface water. Our approach incorporates geospatial data from public sources, including the US Environmental Protection Agency's Toxic Release Inventory, to identify locations where PFAS may be present in drinking water sources. An indicator factor (also known as “risk factor”) was developed as a function of distance between potential past and/or present PFAS users (e.g., military bases, industrial sites, and airports) and the public water system, which generates a heat map that visualizes potential exposure risks. A binomial logistic regression model indicates whether PFAS are likely to be detected in public water systems. The results obtained using the developed screening approach aligned well (with a 76% overall model accuracy) with PFAS sampling and chemical analysis data from 81 public drinking water systems in the state of Kentucky. This study proposes this screening model as an effective decision aid to assist key decision‐makers in identifying and prioritizing sampling locations for potential PFAS exposure risks in the public drinking water sources in their service areas.Integr Environ Assess Manag2023;19:163–174. © 2022 SETAC

     
    more » « less