skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meso -tetra(dioxanyl)porphyrins: Neutral, low molecular weight, and chiral porphyrins with solubility in aqueous solutions
The synthesis of a low-molecular weight, neutral, porphyrin meso-tetra(dioxan-2-yl)porphyrin of significant solubility in aqueous solution is described using 4 × 1 or 2 + 2-type approaches. The key intermediate dioxan-2-carbaldehyde is accessible in either racemic or in stereo-pure forms from commercially available starting materials in three steps, allowing also the preparation of chiral porphyrins.  more » « less
Award ID(s):
1800361
PAR ID:
10283554
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Porphyrins and Phthalocyanines
Volume:
25
Issue:
07n08
ISSN:
1088-4246
Page Range / eLocation ID:
734 to 740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Neo-confused porphyrins (neo-CPs), porphyrin isomers with a 1,3-connected pyrrolic subunit, are aromatic structures with a CNNN coordination core. Previously, examples of neo-CPs with fused benzo units or electron-withdrawing ester substituents have been described. In this paper, two new examples of neo-CPs are reported that lack a fused aromatic unit or an ester moiety, but instead have a bromo or phenyl substituent on the neo-confused ring. Acid-catalyzed condensation of suitably substituted 1,2′-dipyrrylmethane dialdehydes with a 2,2′-dipyrrylmethane, followed by oxidation with aqueous ferric chloride solutions, afforded the neo-CPs in 40–45% yield. These porphyrin analogues had slightly reduced diatropic ring currents and slowly decomposed in solution. The related palladium( ii ) and nickel( ii ) complexes proved to be very unstable, even though the diatropicity of the macrocycle was enhanced. This study shows that stabilizing substituents are necessary for investigations into this class of porphyrinoids. Attempts to prepare imidazole versions of neo-CPs were unsuccessful. 
    more » « less
  2. Abstract The synthesis, characterization, and redox behavior of aryloxide complexes containing an increasing number of internal hydrogen bonds (OEP)Ru(NO)(OArxH) (OEP=octaethylporphyrinato dianion; x=0, 1, 2) are reported. These nitrosyl aryloxide compounds were characterized by X‐ray crystallography, IR and1H NMR spectroscopy. The IR spectra displayed υNOfrequencies in the 1823–1843 cm−1range with compounds possessing more internal hydrogen bonds demonstrating higher υNOfrequencies due to diminished π‐backdonation to the Ru−NO fragment. Comparison of the distinct υNHand δN−Hsignals in the IR and1H NMR spectra of the free and complexed OAr1H/OAr2Hligands support the notion of additional electron density being removed via intramolecular hydrogen bonding. Results of DFT calculations on the (porphine)Ru(NO)(OArxH) models (porphine=unsubstituted porphyrin) reveal that the HOMOs of these complexes have significant axial ligand contributions, whereas the HOMOs of the five‐coordinate [(porphine)RuNO)]+cation resides mostly on the equatorial porphyrin macrocycle. The electrochemical results of these (OEP)Ru(NO)(OArxH) complexes in CH2Cl2reveal first oxidations that occur at increasingly positive potentials when more internal hydrogen bonds are present. Based on the DFT and preliminary IR spectroelectrochemical results, we propose that the electrooxidations result in eventual dissociation of the axial aryloxide ligands. 
    more » « less
  3. The preparation, isolation, and identification of dinitro, trinitro, and tetranitro metalloporphyrins bearing nitro groups on pyrrole rings—desirable intermediates that enable fundamental changes in the chemico‐physical properties of the porphyrin core—are studied. All six possible dinitro‐Ni‐TPP isomers are formed; three are isolated as pure substances using column chromatography, while the remaining three are inseparable. All possible trinitro‐Ni‐TPP isomers are prepared and isolated, except for the 2,7,13 isomer. Attempts to synthesize tetranitro‐Ni‐TPP either through direct nitration of metalloporphyrin or via direct condensation of the nitropyrrole building blocks are unsuccessful. The molecular structures are unambiguously identified using 2D NMR experiments. Some experimental observations, though not all, are consistent with quantum chemical calculations performed on the geometry, energy, Fukui indices, dipole moments of nitroporphyrins, and the energy of nitration intermediates. 
    more » « less
  4. Porphyrins are fascinating molecules with applications spanning various scientific fields. In this review we present the use of periodic density functional theory (PDFT) calculations to study the structure, electronic properties, and reactivity of porphyrins on ordered two dimensional surfaces and in the formation of nanostructures. The focus of the review is to describe the application of PDFT calculations for bridging the gaps in experimental studies on porphyrin nanostructures and self-assembly on 2D surfaces. A survey of different DFT functionals used to study the porphyrin-based system as well as their advantages and disadvantages in studying these systems is presented. 
    more » « less
  5. We report the electrocatalytic Oxygen Reduction Reaction on a rigid Co( ii ) porphyrin prism scaffold bridged by Ag( i ) ions. The reactivity of this scaffold differs significantly from previous prism catalysts in that its selectivity is similar to that of monomer (∼35% H 2 O) yet it displays sluggish kinetics, with an order of magnitude lower k s of ∼0.5 M −1 s −1 . The deleterious cofacial effect is not simply due to metal–metal separation, which is similar to our most selective prism catalysts. Instead we conclude the structural rigidity is responsible for these differences. 
    more » « less