The challenge of quantum computing is to combine error resilience with universal computation. Diagonal gates such as the transversal T gate play an important role in implementing a universal set of quantum operations. This paper introduces a framework that describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction that may depend on the measured syndrome (the average logical channel induced by an arbitrary diagonal gate). It focuses on CSS codes, and describes the interaction of code states and physical gates in terms of generator coefficients determined by the induced logical operator. The interaction of code states and diagonal gates depends very strongly on the signs of Z -stabilizers in the CSS code, and the proposed generator coefficient framework explicitly includes this degree of freedom. The paper derives necessary and sufficient conditions for an arbitrary diagonal gate to preserve the code space of a stabilizer code, and provides an explicit expression of the induced logical operator. When the diagonal gate is a quadratic form diagonal gate (introduced by Rengaswamy et al.), the conditions can be expressed in terms of divisibility of weights in the two classical codes that determine the CSS code. These codes find application in magic state distillation and elsewhere. When all the signs are positive, the paper characterizes all possible CSS codes, invariant under transversal Z -rotation through π / 2 l , that are constructed from classical Reed-Muller codes by deriving the necessary and sufficient constraints on l . The generator coefficient framework extends to arbitrary stabilizer codes but there is nothing to be gained by considering the more general class of non-degenerate stabilizer codes.
more »
« less
Classical Coding Problem from Transversal T Gates
Universal quantum computation requires the implementation of a logical non-Clifford gate. In this paper, we characterize all stabilizer codes whose code subspaces are preserved under physical T and T † gates. For example, this could enable magic state distillation with non-CSS codes and, thus, provide better parameters than CSS-based protocols. However, among non-degenerate stabilizer codes that support transversal T, we prove that CSS codes are optimal. We also show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical transversal T via physical transversal T. Using our algebraic approach, we reveal new purely-classical coding problems that are intimately related to the realization of logical operations via transversal T. Decreasing monomial codes are also used to construct a code that realizes logical CCZ. Finally, we use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes. This result is generalized to finer angle Z-rotations in https://arxiv.org/abs/1910.09333.
more »
« less
- Award ID(s):
- 1908730
- PAR ID:
- 10283649
- Date Published:
- Journal Name:
- 2020 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 1891 to 1896
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The CSS code construction is a powerful framework used to express features of a quantum code in terms of a pair of underlying classical codes. Its subsystem extension allows for similar expressions, but the general case has not been fully explored. Extending previous work of Aly, Klappenecker, and Sarvepalli \cite{AKS06}, we determine subsystem CSS code parameters, express codewords, and develop a Steane-type decoder using only data from the two underlying classical codes. Generalizing a result of Kovalev and Pryadko \cite{KP13}, we show that any subsystem stabilizer code can be doubled to yield a subsystem CSS code with twice the number of physical, logical, and gauge qudits and up to twice the code distance. This mapping preserves locality and is tighter than the Majorana-based mapping of Bravyi, Terhal, and Leemhuis \cite{BTL10}. Using Goursat's Lemma, we show that every subsystem stabilizer code can be constructed from two nested subsystem CSS codes satisfying certain constraints, and we characterize subsystem stabilizer codes based on the nested codes' properties.more » « less
-
Recent experimental advances have made it possible to implement logical multiqubit transversal gates on surface codes in a multitude of platforms. A transversal controlled- (t) gate on two surface codes introduces correlated errors across the code blocks and thus requires modified decoding compared to established methods of decoding surface-code quantum memory (SCQM) or lattice-surgery operations. In this work, we examine and benchmark the performance of three different decoding strategies for the t for scalable fault-tolerant quantum computation. In particular, we present a low-complexity decoder based on minimum-weight perfect matching (MWPM) that achieves the same threshold as the SCQM MWPM decoder. We extend our analysis with a study of tailored decoding of a transversal-teleportation circuit, along with a comparison between the performance of lattice-surgery and transversal operations under Pauli- and erasure-noise models. Our investigation builds toward systematic estimation of the cost of implementing large-scale quantum algorithms based on transversal gates in the surface code. Published by the American Physical Society2025more » « less
-
Quantum error-correcting codes can be used to protect qubits involved in quantum computation. This requires that logical operators acting on protected qubits be translated to physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in CN ×N as a 2m × 2m binary sym- plectic matrix, where N = 2m. We show that for an [m, m − k] stabilizer code every logical Clifford operator has 2k(k+1)/2 symplectic solutions, and we enumerate them efficiently using symplectic transvections. The desired circuits are then obtained by writing each of the solutions as a product of elementary symplectic matrices. For a given operator, our assembly of all of its physical realizations enables optimization over them with respect to a suitable metric. Our method of circuit synthesis can be applied to any stabilizer code, and this paper provides a proof of concept synthesis of universal Clifford gates for the well- known [6, 4, 2] code. Programs implementing our algorithms can be found at https://github.com/nrenga/symplectic-arxiv18a.more » « less
-
Abstract CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes$$(C_1, C_2)$$ such that$$C_1$$ contains$$C_2$$ ,$$C_2$$ is even, and the shortening of the dual of$$C_1$$ with respect to the support of each codeword of$$C_2$$ is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes$$(C_1, C_2)$$ is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed–Muller, cyclic and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature.more » « less
An official website of the United States government

