skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Rhizosphere Responds: Rich Fen Peat and Root Microbial Ecology after Long-Term Water Table Manipulation
ABSTRACT Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae , were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae . IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.  more » « less
Award ID(s):
2011277 1636476 2011257 1354370
PAR ID:
10283988
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Stams, Alfons J.
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
87
Issue:
12
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores. 
    more » « less
  2. Sphagnum-dominated peatlands store more carbon than all of Earth’s forests, playing a large role in the balance of carbon dioxide. However, these carbon sinks face an uncertain future as the changing climate is likely to cause water stress, potentially reducing Sphagnum productivity and transitioning peatlands to carbon sources. A mesocosm experiment was performed on thirty-two peat cores collected from two peatland landforms: elevated mounds (hummocks) and lower, flat areas of the peatland (hollows). Both rainfall treatments and water tables were manipulated, and CO2 fluxes were measured. Other studies have observed peat subsiding and tracking the water table downward when experiencing water stress, thought to be a self-preservation technique termed ‘Mire-breathing’. However, we found that hummocks tended to compress inwards, rather than subsiding towards the lowered water table as significantly as hollows. Lower peat height was linearly associated with reduced gross primary production (GPP) in response to lowered water tables, indicating that peat subsidence did not significantly enhance the resistance of GPP to drought. Conversely, Sphagnum peat compression was found to stabilize GPP, indicating that this mechanism of resilience to drought may transmit across the landscape depending on which Sphagnum landform types are dominant. This study draws direct connections between Sphagnum traits and peatland hydrology and carbon cycling. 
    more » « less
  3. null (Ed.)
    Abstract. Mangrove forests are ecosystems that constitute a large portion of the world's coastline and span tidal zones below, between, and above thewaterline, and the ecosystem as a whole is defined by the health of these tidal microhabitats. However, we are only beginning to understand tidal-zone microbial biodiversity and the role of these microbiomes in nutrient cycling. While extensive research has characterized microbiomes inpristine vs. anthropogenically impacted mangroves, these have, largely, overlooked differences in tidal microhabitats (sublittoral, intertidal, andsupralittoral). Unfortunately, the small number of studies that have sought to characterize mangrove tidal zones have occurred in impacted biomes,making interpretation of the results difficult. Here, we characterized prokaryotic populations and their involvement in nutrient cycling across thetidal zones of a pristine mangrove within a Brazilian Environmental Protection Area of the Atlantic Forest. We hypothesized that the tidal zones inpristine mangroves are distinct microhabitats, which we defined as distinct regions that present spatial variations in the water regime and otherenvironmental factors, and as such, these are composed of different prokaryotic communities with distinct functional profiles. Samples werecollected in triplicate from zones below, between, and above the tidal waterline. Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, we found distinctprokaryotic communities with significantly diverse nutrient-cycling functions, as well as specific taxa with varying contributions to functionalabundances between zones. Where previous research from anthropogenically impacted mangroves found the intertidal zone to have high prokaryoticdiversity and be functionally enriched in nitrogen cycling, we find that the intertidal zone from pristine mangroves has the lowest diversity and nofunctional enrichment, relative to the other tidal zones. The main bacterial phyla in all samples were Firmicutes, Proteobacteria,and Chloroflexi while the main archaeal phyla were Crenarchaeota and Thaumarchaeota. Our results differ slightly fromother studies where Proteobacteria is the main phyla in mangrove sediments and Firmicutes makes up only a small percentage ofthe communities. Salinity and organic matter were the most relevant environmental factors influencing these communities. Bacillaceae wasthe most abundant family at each tidal zone and showed potential to drive a large proportion of the cycling of carbon, nitrogen, phosphorus, andsulfur. Our findings suggest that some aspects of mangrove tidal zonation may be compromised by human activity, especially in the intertidal zone. 
    more » « less
  4. null (Ed.)
    Globally important carbon (C) stores in boreal peatlands are vulnerable to altered hydrology through changes in precipitation and runoff patterns, groundwater inputs, and a changing cryosphere. These changes can affect the extent of boreal wetlands and their ability to sequester and transform C and other nutrients. Variation in precipitation patterns has also been increasing, with greater occurrences of both flooding and drought periods. Recent work has pointed to the increasing role of algal production in regulating C cycling during flooded periods in fen peatlands, but exactly how this affects the C sink-strength of these ecosystems is poorly understood. We evaluated temporal trends in algal biomass, ecosystem C uptake and respiration (using static and floating chamber techniques), and spectroscopic indicators of DOM quality (absorbance and fluorescence) in a boreal rich-fen peatland in which water table position had been experimentally manipulated for 13 years. Superimposed on the water table treatments were natural variations in hydrology, including periods of flooding, which allowed us to examine the legacy effects of flooding on C cycling dynamics. We had a particular focus on understanding the role of algae in regulating C cycling, as the relative contribution of algal production was observed to significantly increase with flooding. Ecosystem measures of gross primary production (GPP) increased with algal biomass, with higher algal biomass and GPP measured in the lowered water table treatment two years after persistent flooding. Prior to flooding the lowered treatment was the weakest C sink (as CO 2 ), but this treatment became the strongest sink after flooding. The lower degree of humification (lower humification index, HIX) and yet lower bioavailability (higher spectral slope ratio, Sr) of DOM observed in the raised treatment prior to flooding persisted after two years of flooding. An index of free or bound proteins (tyrosine index, TI) increased with algal biomass across all plots during flooding, and was lowest in the raised treatment. As such, antecedent drainage conditions determined the sink-strength of this rich fen—which was also reflected in DOM characteristics. These findings indicate that monitoring flooding history and its effects on algal production could become important to estimates of C balance in northern wetlands. 
    more » « less
  5. Abstract Carbon-rich peat soils have been drained and used extensively for agriculture throughout human history, leading to significant losses of their soil carbon. One solution for rewetting degraded peat is wet crop cultivation. Crops such as rice, which can grow in water-saturated conditions, could enable agricultural production to be maintained whilst reducing CO2and N2O emissions from peat. However, wet rice cultivation can release considerable methane (CH4). Water table and soil management strategies may enhance rice yield and minimize CH4emissions, but they also influence plant biomass allocation strategies. It remains unclear how water and soil management influences rice allocation strategies and how changing plant allocation and associated traits, particularly belowground, influence CH4-related processes. We examined belowground biomass (BGB), aboveground biomass (AGB), belowground:aboveground ratio (BGB:ABG), and a range of root traits (root length, root diameter, root volume, root area, and specific root length) under different soil and water treatments; and evaluated plant trait linkages to CH4. Rice (Oryza sativaL.) was grown for six months in field mesocosms under high (saturated) or low water table treatments, and in either degraded peat soil or degraded peat covered with mineral soil. We found that BGB and BGB:AGB were lowest in water saturated conditions where mineral soil had been added to the peat, and highest in low-water table peat soils. Furthermore, CH4and BGB were positively related, with BGB explaining 60% of the variation in CH4but only under low water table conditions. Our results suggest that a mix of low water table and mineral soil addition could minimize belowground plant allocation in rice, which could further lower CH4likely because root-derived carbon is a key substrate for methanogenesis. Minimizing root allocation, in conjunction with water and soil management, could be explored as a strategy for lowering CH4emissions from wet rice cultivation in degraded peatlands. 
    more » « less