skip to main content


Title: KAT4IA: K -Means Assisted Training for Image Analysis of Field-Grown Plant Phenotypes
High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are mainly based on supervised learning with human labeled data or semisupervised learning with a mixture of human labeled data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor-intensive. We describe a self-supervised pipeline (KAT4IA) that uses K -means clustering on greenhouse images to construct training data for extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights.  more » « less
Award ID(s):
1934884
NSF-PAR ID:
10284436
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Plant Phenomics
Volume:
2021
ISSN:
2643-6515
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The world’s coastlines are spatially highly variable, coupled-human-natural systems that comprise a nested hierarchy of component landforms, ecosystems, and human interventions, each interacting over a range of space and time scales. Understanding and predicting coastline dynamics necessitates frequent observation from imaging sensors on remote sensing platforms. Machine Learning models that carry out supervised (i.e., human-guided) pixel-based classification, or image segmentation, have transformative applications in spatio-temporal mapping of dynamic environments, including transient coastal landforms, sediments, habitats, waterbodies, and water flows. However, these models require large and well-documented training and testing datasets consisting of labeled imagery. We describe “Coast Train,” a multi-labeler dataset of orthomosaic and satellite images of coastal environments and corresponding labels. These data include imagery that are diverse in space and time, and contain 1.2 billion labeled pixels, representing over 3.6 million hectares. We use a human-in-the-loop tool especially designed for rapid and reproducible Earth surface image segmentation. Our approach permits image labeling by multiple labelers, in turn enabling quantification of pixel-level agreement over individual and collections of images. 
    more » « less
  2. This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separating plant pixels from background, organ-specific segmentation makes it feasible to measure a wider range of plant properties. Manually scored training data for a set of hyperspectral images collected from a sorghum association population was used to train and evaluate a set of supervised classification models. Many algorithms show acceptable accuracy for this classification task. Algorithms trained on sorghum data are able to accurately classify maize leaves and stalks, but fail to accurately classify maize reproductive organs which are not directly equivalent to sorghum panicles. Trait measurements extracted from semantic segmentation of sorghum organs can be used to identify both genes known to be controlling variation in a previously measured phenotypes (e.g., panicle size and plant height) as well as identify signals for genes controlling traits not previously quantified in this population (e.g., stalk/leaf ratio). Organ level semantic segmentation provides opportunities to identify genes controlling variation in a wide range of morphological phenotypes in sorghum, maize, and other related grain crops. 
    more » « less
  3. In the field of materials science, microscopy is the first and often only accessible method for structural characterization. There is a growing interest in the development of machine learning methods that can automate the analysis and interpretation of microscopy images. Typically training of machine learning models requires large numbers of images with associated structural labels, however, manual labeling of images requires domain knowledge and is prone to human error and subjectivity. To overcome these limitations, we present a semi-supervised transfer learning approach that uses a small number of labeled microscopy images for training and performs as effectively as methods trained on significantly larger image datasets. Specifically, we train an image encoder with unlabeled images using self-supervised learning methods and use that encoder for transfer learning of different downstream image tasks (classification and segmentation) with a minimal number of labeled images for training. We test the transfer learning ability of two self-supervised learning methods: SimCLR and Barlow-Twins on transmission electron microscopy (TEM) images. We demonstrate in detail how this machine learning workflow applied to TEM images of protein nanowires enables automated classification of nanowire morphologies ( e.g. , single nanowires, nanowire bundles, phase separated) as well as segmentation tasks that can serve as groundwork for quantification of nanowire domain sizes and shape analysis. We also extend the application of the machine learning workflow to classification of nanoparticle morphologies and identification of different type of viruses from TEM images. 
    more » « less
  4. null (Ed.)
    Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed on petri plates and/or in a low-throughput manner. Additionally, the BR pathway has extensive crosstalk with drought responses, but drought experiments are time-consuming and difficult to control. Thus, we developed Robotic Assay for Drought (RoAD) to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction in order to accurately measure traits in 2-dimensional (2D) and 3-dimensional (3D) spaces including plant surface area, leaf length, and leaf width. We then applied machine learning algorithms that utilized the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants, providing insights into the BR-mediated control of plant growth and stress responses. 
    more » « less
  5. Maize (Zea mays L.) is one of the three major cereal crops in the world. Leaf angle is an important architectural trait of crops due to its substantial role in light interception by the canopy and hence photosynthetic efficiency. Traditionally, leaf angle has been measured using a protractor, a process that is both slow and laborious. Efficiently measuring leaf angle under field conditions via imaging is challenging due to leaf density in the canopy and the resulting occlusions. However, advances in imaging technologies and machine learning have provided new tools for image acquisition and analysis that could be used to characterize leaf angle using three-dimensional (3D) models of field-grown plants. In this study, PhenoBot 3.0, a robotic vehicle designed to traverse between pairs of agronomically spaced rows of crops, was equipped with multiple tiers of PhenoStereo cameras to capture side-view images of maize plants in the field. PhenoStereo is a customized stereo camera module with integrated strobe lighting for high-speed stereoscopic image acquisition under variable outdoor lighting conditions. An automated image processing pipeline (AngleNet) was developed to measure leaf angles of nonoccluded leaves. In this pipeline, a novel representation form of leaf angle as a triplet of keypoints was proposed. The pipeline employs convolutional neural networks to detect each leaf angle in two-dimensional images and 3D modeling approaches to extract quantitative data from reconstructed models. Our study demonstrates the feasibility of using stereo vision to investigate the distribution of leaf angles in maize under field conditions. The proposed system is an efficient alternative to traditional leaf angle phenotyping and thus could accelerate breeding for improved plant architecture. 
    more » « less