skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform
Abstract

The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

 
more » « less
Award ID(s):
2023987
PAR ID:
10368593
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs−InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs−InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer−Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs−InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device’s footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy. 
    more » « less
  2. Chemicals are best recognized by their unique wavelength specific optical absorption signatures in the molecular fingerprint region from λ=3-15μm. In recent years, photonic devices on chips are increasingly being used for chemical and biological sensing. Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics as well as its optical transparency in the near-infrared telecom wavelengths. Silicon is optically transparent from 1.1 μm to 8 μm with research from several groups in the mid-IR. However, intrinsic material losses in silicon exceed 2dB/cm after λ~7μm (~0.25dB/cm at λ=6μm). In addition to the waveguiding core, an appropriate transparent cladding is also required. Available core-cladding choices such as Ge-GaAs, GaAs-AlGaAs, InGaAs-InP would need suspended membrane photonic crystal waveguide geometries. However, since the most efficient QCLs demonstrated are in the InP platform, the choice of InGaAs-InP eliminates need for wafer bonding versus other choices. The InGaAs-InP material platform can also potentially cover the entire molecular fingerprint region from λ=3-15μm. At long wavelengths, in monolithic architectures integrating lasers, detectors and passive sensor photonic components without wafer bonding, compact passive photonic integrated circuit (PIC) components are desirable to reduce expensive epi material loss in passive PIC etched areas. In this paper, we consider miniaturization of waveguide bends and polarization rotators. We experimentally demonstrate suspended membrane subwavelength waveguide bends with compact sub-50μm bend radius and compact sub-300μm long polarization rotators in the InGaAs/InP material system. Measurements are centered at λ=6.15μm for sensing ammonia 
    more » « less
  3. Widely tunable coherent sources are desirable in nanophotonics for a multitude of applications ranging from communications to sensing. The mid-infrared spectral region (wavelengths beyond 2 μm) is particularly important for applications relying on molecular spectroscopy. Among tunable sources, optical parametric oscillators typically offer some of the broadest tuning ranges; however, their implementations in nanophotonics have been limited to narrow tuning ranges in the infrared or to visible wavelengths. Here, we surpass these limits in dispersion-engineered periodically poled lithium niobate nanophotonics and demonstrate ultrawidely tunable optical parametric oscillators. Using 100 ns pulses near 1 μm, we generate output wavelengths tunable from 1.53 μm to 3.25 μm in a single chip with output powers as high as tens of milliwatts. Our results represent the first octave-spanning tunable source in nanophotonics extending into the mid-infrared, which can be useful for numerous integrated photonic applications.

     
    more » « less
  4. Abstract

    A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy.

     
    more » « less
  5. We model laser filamentation in ZnSe in the mid-infrared (Mid-IR, wavelengths λ = 4 and 6 μm) and the long-wavelength infrared (LWIR, λ = 8 and 10 μm) using carrier-resolved unidirectional pulse propagation equations (UPPE). We predict an unprecedented propagation regime at λ = 8 μm that supports light bullets, which are spatio-temporally non-spreading electromagnetic pulses. Furthermore, in contrast to the previous report in air in the mid-IR, we predict that LWIR light bullets in solids critically rely on plasma-mediated dispersion, which dynamically evolves during multiphoton and tunneling ionization as peak plasma densities reach ρ 6.6 ×10^18 cm-3 . Finally, the plasma-assisted light bullets propagate with sub-cycle pulse durations and peak intensities I = 1.1 ×10^12 W /cm^2 , making them useful for high-harmonic generation and attosecond pulse generation. 
    more » « less