The global pandemic of COVID-19 has highlighted the importance of understanding the role that exhaled droplets play in virus transmission in community settings. Computational Fluid Dynamics (CFD) enables systematic examination of roles the exhaled droplets play in the spread of SARS-CoV-2 in indoor environments. This analysis uses published exhaled droplet size distributions combined with terminal aerosol droplet size based on measured peak concentrations for SARS-CoV-2 RNA in aerosols to simulate exhaled droplet dispersion, evaporation, and deposition in a supermarket checkout area and rideshare car where close proximity with other individuals is common. Using air inlet velocity of 2 m/s in the passenger car and ASHRAE recommendations for ventilation and comfort in the supermarket, simulations demonstrate that exhaled droplets <20 μm that contain the majority of viral RNA evaporated leaving residual droplet nuclei that remain aerosolized in the air. Subsequently ~ 70% of these droplet nuclei deposited in the supermarket and the car with the reminder vented from the space. The maximum surface deposition of droplet nuclei/m2for speaking and coughing were 2 and 819, 18 and 1387 for supermarket and car respectively. Approximately 15% of the total exhaled droplets (aerodynamic diameters 20-700 µm) were deposited on surfaces in close proximity to the individual. Due to the non-linear distribution of viral RNA across droplet sizes, however, these larger exhaled droplets that deposit on surfaces have low viral content. Maximum surface deposition of viral RNA was 70 and 1.7 × 103virions/m2for speaking and 2.3 × 104and 9.3 × 104virions/m2for coughing in the supermarket and car respectively while the initial airborne concentration of viral RNA was 7 × 106copies per ml. Integrating the droplet size distributions with viral load distributions, this study helps explain the apparent importance of inhalation exposures compared to surface contact observed in the pandemic.
more »
« less
Effect of saliva fluid properties on pathogen transmissibility
Abstract With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen’s ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2’s transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.
more »
« less
- Award ID(s):
- 2031227
- PAR ID:
- 10284797
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols—how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.more » « less
-
Abstract Background Airborne viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be encapsulated and transmitted through liquid droplets/aerosols formed during human respiratory events. Methods The number and extent of droplets/aerosols at distances between 1 and 6 ft (0.305–1.829 m) for a participant wearing no face covering, a cotton single-layer cloth face covering, and a 3-layer disposable face covering were measured for defined speech and cough events. The data include planar particle imagery to illuminate emissions by a light-sheet and local aerosol/droplet probes taken with phase Doppler interferometry and an aerodynamic particle sizer. Results Without face coverings, droplets/aerosols were detected up to a maximum of 1.25 m (4.1ft ± 0.22–0.28 ft) during speech and up to 1.37 m (4.5ft ± 0.19–0.33 ft) while coughing. The cloth face covering reduced maximum axial distances to 0.61 m (2.0 ft ± 0.11–0.15 ft) for speech and to 0.67 m (2.2 ft ± 0.02–0.20 ft) while coughing. Using the disposable face covering, safe distance was reduced further to 0.15 m (0.50 ft ± 0.01–0.03 ft) measured for both emission scenarios. In addition, the use of face coverings was highly effective in reducing the count of expelled aerosols. Conclusions The experimental study indicates that 0.914 m (3 ft) physical distancing with face coverings is equally as effective at reducing aerosol/droplet exposure as 1.829 m (6 ft) with no face covering.more » « less
-
Abstract How human respiratory physiology and the transport phenomena associated with inhaled airflow in the upper airway proceed to impact transmission of SARS-CoV-2, leading to the initial infection, stays an open question. An answer can help determine the susceptibility of an individual on exposure to a COVID-2019 carrier and can also provide a preliminary projection of the still-unknown infectious dose for the disease. Computational fluid mechanics enabled tracking of respiratory transport in medical imaging-based anatomic domains shows that the regional deposition of virus-laden inhaled droplets at the initial nasopharyngeal infection site peaks for the droplet size range of approximately 2.5–19$$\upmu $$ . Through integrating the numerical findings on inhaled transmission with sputum assessment data from hospitalized COVID-19 patients and earlier measurements of ejecta size distribution generated during regular speech, this study further reveals that the number of virions that may go on to establish the SARS-CoV-2 infection in a subject could merely be in the order of hundreds.more » « less
-
There is an ongoing debate on the different transmission modes of SARS-CoV-2 and their relative contributions to the pandemic. In this paper, we employ a simple mathematical model, which incorporates both the human-to-human and environment-to-human transmission routes, to study the transmission dynamics of COVID-19. We focus our attention on the role of airborne transmission in the spread of the disease in a university campus setting. We conduct both mathematical analysis and numerical simulation, and incorporate published experimental data for the viral concentration in the air to fit model parameters. Meanwhile, we compare the outcome to that of the standard SIR model, utilizing a perturbation analysis in the presence of multiple time scales. Our data fitting and numerical simulation results show that the risk of airborne transmission for SARS-CoV-2 strongly depends on how long the virus can remain viable in the air. If the time for this viability is short, the airborne transmission route would be inconsequential in shaping the overall transmission risk and the total infection size. On the other hand, if the infectious virus can persist in aerosols beyond a few hours, then airborne transmission could play a much more significant role in the spread of COVID-19.more » « less
An official website of the United States government
