We assess the Value of Information (VoI) for inspecting components in systems managed by multiple agents, using game theory and Nash equilibrium analysis. We focus on binary systems made up by binary components which can be either intact or damaged. Agents taking maintenance actions are responsible for the repair costs of their own components, and the penalty for system failure is shared among all agents. The precision of inspection is also considered, and we identify the prior and posterior Nash equilibrium with perfect or imperfect inspections. The VoI is assessed for the individual agents as well as for the whole set of agents, and the analysis consider series, parallel and general systems. A negative VoI can trigger the phenomenon of Information Avoidance (IA), where rational agents prefer not to collect free information. We discuss whether it is possible that the VoI is negative for one or for all agents, for the agents with inspected or uninspected components, and for the total sum of VoIs.
more »
« less
Optimal inspection of binary systems via value of information analysis
We develop computable metrics to assign priorities for information collection on binary systems composed of binary components. Components are worth inspecting because their condition states are uncertain, and system functioning depends on them. The Value of Information (VoI) enables assessment of the impact of information in decision making under uncertainty, including the component’s reliability and role in the system, the precision of the observation, the available maintenance actions and the expected economic loss. We introduce the VoI-based metrics for system-level (“global”) and component-level (“local”) maintenance actions, analyze the properties of these metrics, and apply them to series and parallel systems. We discuss their computational complexity in applications to general network systems and, to tame the complexity for the local metric assessment, we present a heuristic and assess its performance on some case studies.
more »
« less
- Award ID(s):
- 1653716
- PAR ID:
- 10284840
- Date Published:
- Journal Name:
- Reliability engineering systems safety
- ISSN:
- 0951-8320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many infrastructure systems can be modeled as networks of components with binary states (intact, damaged). Information about components’ conditions is crucial for the maintenance process of the system. However, it is often impossible to collect information of all components due to budget constraints. Several metrics have been developed to assess the importance of the components in relation to maintenance actions: an important component is one that should receive high maintenance priority. Instead, in this paper we focus on the priority to be assigned for component inspections and information collection. We investigate metrics based on system level (global) and component level (local) decision making after inspection for networks with different topology, and compare these results with traditional ones. We then discuss the computational challenges of these metrics and provide possible approximation approaches.more » « less
-
Optimal exploration of engineering systems can be guided by the principle of Value of Information (VoI), which accounts for the topological important of components, their reliability and the management costs. For series systems, in most cases higher inspection priority should be given to unreliable components. For redundant systems such as parallel systems, analysis of one-shot decision problems shows that higher inspection priority should be given to more reliable components. This paper investigates the optimal exploration of redundant systems in long-term decision making with sequential inspection and repairing. When the expected, cumulated, discounted cost is considered, it may become more efficient to give higher inspection priority to less reliable components, in order to preserve system redundancy. To investigate this problem, we develop a Partially Observable Markov Decision Process (POMDP) framework for sequential inspection and maintenance of redundant systems, where the VoI analysis is embedded in the optimal selection of exploratory actions. We investigate the use of alternative approximate POMDP solvers for parallel and more general systems, compare their computation complexities and performance, and show how the inspection priorities depend on the economic discount factor, the degradation rate, the inspection precision, and the repair cost.more » « less
-
The value of information (VoI) provides a rational metric to assess the impact of data in decision processes, including maintenance of engineering systems. According to the principle that “information never hurts”, VoI is guaranteed to be non-negative when a single agent aims at minimizing an expected cost. However, in other contexts such as non-cooperative games, where agents compete against each other, revealing a piece of information to all agents may have a negative impact to some of them, as the negative effect of the competitors being informed and adjusting their policies surpasses the direct VoI. Being aware of this, some agents prefer to avoid having certain information collected, when it must be shared with others, as the overall VoI is negative for them. A similar result may occur for managers of infrastructure assets following the prescriptions of codes and regulations. Modern codes require the probability of some failure events be below a threshold, so managers are forced to retrofit assets if that probability is too high. If the economic incentive of those agents disagrees with the code requirements, the VoI associated with tests or inspections may be negative. In this paper, we investigate under what circumstance this happens, and how severe the effects of this issue can be.more » « less
-
The age of information (AoI) is now well established as a metric that measures the freshness of information delivered to a receiver from a source that generates status updates. This paper is motivated by the inherent value of packets arising in many cyber-physical applications (e.g., due to precision of the information content or an alarm message). In contrast to AoI, which considers all packets are of equal importance or value, we consider status update systems with update packets carrying values as well as their generated time stamps. A status update packet has a random initial value at the source and a deterministic deadline after which its value vanishes (called ultimate staleness). In our model, the value of a packet either remains constant until the deadline or decreases in time (even after reception) starting from its generation to the deadline when it vanishes. We consider two metrics for the value of information (VoI) at the receiver: sum VoI is the sum of the current values of all packets held by the receiver, whereas packet VoI is the value of a packet at the instant it is delivered to the receiver. We investigate various queuing disciplines under potential dependence between value and service time and provide closed form expressions for both average sum VoI and packet VoI at the receiver. Numerical results illustrate the average VoI for different scenarios and relations between average sum VoI and average packet VoI.more » « less
An official website of the United States government

