skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Negative value of information in systems’ maintenance
The value of information (VoI) provides a rational metric to assess the impact of data in decision processes, including maintenance of engineering systems. According to the principle that “information never hurts”, VoI is guaranteed to be non-negative when a single agent aims at minimizing an expected cost. However, in other contexts such as non-cooperative games, where agents compete against each other, revealing a piece of information to all agents may have a negative impact to some of them, as the negative effect of the competitors being informed and adjusting their policies surpasses the direct VoI. Being aware of this, some agents prefer to avoid having certain information collected, when it must be shared with others, as the overall VoI is negative for them. A similar result may occur for managers of infrastructure assets following the prescriptions of codes and regulations. Modern codes require the probability of some failure events be below a threshold, so managers are forced to retrofit assets if that probability is too high. If the economic incentive of those agents disagrees with the code requirements, the VoI associated with tests or inspections may be negative. In this paper, we investigate under what circumstance this happens, and how severe the effects of this issue can be.  more » « less
Award ID(s):
1638327
PAR ID:
10065509
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure 12th Int. Conf. on Structural Safety and Reliability, Vienna, Austria, 6–10 August 2017
Page Range / eLocation ID:
3339-3346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Value of Information (VoI) assesses the impact of data in a decision process. A risk-neutral agent, quantifying the VoI in monetary terms, prefers to collect data only if their VoI surpasses the cost to collect them. For an agent acting without external constraints, data have non-negative VoI (as free “information cannot hurt”) and those with an almost-negligible potential effect on the agent's belief have an almost-negligible VoI. However, these intuitive properties do not hold true for an agent acting under external constraints related to epistemic quantities, such as those posed by some regulations. For example, a manager forced to repair an asset when its probability of failure is too high can prefer to avoid collecting free information about the actual condition of the asset, and even to pay in order to avoid this, or she can assign a high VoI to almost-irrelevant data. Hence, by enforcing epistemic constraints in the regulations, the policy-maker can induce a range of counter-intuitive, but rational, behaviors, from information avoidance to over-evaluation of barely relevant information, in the agents obeying the regulations. This paper illustrates how the structural properties of VoI change depending on such external epistemic constraints, and discusses how incentives and penalties can alleviate these induced attitudes toward information. 
    more » « less
  2. We assess the Value of Information (VoI) for inspecting components in systems managed by multiple agents, using game theory and Nash equilibrium analysis. We focus on binary systems made up by binary components which can be either intact or damaged. Agents taking maintenance actions are responsible for the repair costs of their own components, and the penalty for system failure is shared among all agents. The precision of inspection is also considered, and we identify the prior and posterior Nash equilibrium with perfect or imperfect inspections. The VoI is assessed for the individual agents as well as for the whole set of agents, and the analysis consider series, parallel and general systems. A negative VoI can trigger the phenomenon of Information Avoidance (IA), where rational agents prefer not to collect free information. We discuss whether it is possible that the VoI is negative for one or for all agents, for the agents with inspected or uninspected components, and for the total sum of VoIs. 
    more » « less
  3. We introduce two generalizations to the paradigm of using Random Khatri-Rao Product (RKRP) codes for distributed matrix multiplication. We first introduce a class of codes called Sparse Random Khatri-Rao Product (SRKRP) codes which have sparse generator matrices. SRKRP codes result in lower encoding, computation and communication costs than RKRP codes when the input matrices are sparse, while they exhibit similar numerical stability to other state of the art schemes. We empirically study the relationship between the probability of the generator matrix (restricted to the set of non-stragglers) of a randomly chosen SRKRP code being rank deficient and various parameters of the coding scheme including the degree of sparsity of the generator matrix and the number of non-stragglers. Secondly, we show that if the master node can perform a very small number of matrix product computations in addition to the computations performed by the workers, the failure probability can be substantially improved. 
    more » « less
  4. null (Ed.)
    We exhibit a natural environment, social learning among heterogeneous agents, where even slight misperceptions can have a large negative impact on long‐run learning outcomes. We consider a population of agents who obtain information about the state of the world both from initial private signals and by observing a random sample of other agents' actions over time, where agents' actions depend not only on their beliefs about the state but also on their idiosyncratic types (e.g., tastes or risk attitudes). When agents are correct about the type distribution in the population, they learn the true state in the long run. By contrast, we show, first, that even arbitrarily small amounts of misperception about the type distribution can generate extreme breakdowns of information aggregation, where in the long run all agents incorrectly assign probability 1 to some fixed state of the world, regardless of the true underlying state. Second, any misperception of the type distribution leads long‐run beliefs and behavior to vary only coarsely with the state, and we provide systematic predictions for how the nature of misperception shapes these coarse long‐run outcomes. Third, we show that how fragile information aggregation is against misperception depends on the richness of agents' payoff‐relevant uncertainty; a design implication is that information aggregation can be improved by simplifying agents' learning environment. The key feature behind our findings is that agents' belief‐updating becomes “decoupled” from the true state over time. We point to other environments where this feature is present and leads to similar fragility results. 
    more » « less
  5. We study the voting game where agents' preferences are endogenously decided by the information they receive, and they can collaborate in a group. We show that strategic voting behaviors have a positive impact on leading to the "correct" decision, outperforming the common non-strategic behavior of informative voting and sincere voting. Our results give merit to strategic voting for making good decisions. To this end, we investigate a natural model, where voters' preferences between two alternatives depend on a discrete state variable that is not directly observable. Each voter receives a private signal that is correlated with the state variable. We reveal a surprising equilibrium between a strategy profile being a strong equilibrium and leading to the decision favored by the majority of agents conditioned on them knowing the ground truth (referred to as the informed majority decision): as the size of the vote goes to infinity, every ε-strong Bayes Nash Equilibrium with ε converging to 0 formed by strategic agents leads to the informed majority decision with probability converging to 1. On the other hand, we show that informative voting leads to the informed majority decision only under unbiased instances, and sincere voting leads to the informed majority decision only when it also forms an equilibrium. 
    more » « less