Current leading mispronunciation detection and diagnosis (MDD) systems achieve promising performance via end-to-end phoneme recognition. One challenge of such end-to-end solutions is the scarcity of human-annotated phonemes on natural L2 speech. In this work, we leverage unlabeled L2 speech via a pseudo-labeling (PL) procedure and extend the fine-tuning approach based on pre-trained self-supervised learning (SSL) models. Specifically, we use Wav2vec 2.0 as our SSL model, and fine-tune it using original labeled L2 speech samples plus the created pseudo-labeled L2 speech samples. Our pseudo labels are dynamic and are produced by an ensemble of the online model on-the-fly, which ensures that our model is robust to pseudo label noise. We show that fine-tuning with pseudo labels achieves a 5.35% phoneme error rate reduction and 2.48% MDD F1 score improvement over a labeled-samples-only finetuning baseline. The proposed PL method is also shown to outperform conventional offline PL methods. Compared to the state-of-the-art MDD systems, our MDD solution produces a more accurate and consistent phonetic error diagnosis. In addition, we conduct an open test on a separate UTD-4Accents dataset, where our system recognition outputs show a strong correlation with human perception, based on accentedness and intelligibility.
more »
« less
3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection
3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes. We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels. However, due to the high task complexity, we observe that the pseudo-labels suffer from significant noise and are thus not directly usable. To that end, we introduce a confidence-based filtering mechanism, inspired by FixMatch. We set confidence thresholds based upon the predicted objectness and class probability to filter low-quality pseudo-labels. While effective, we observe that these two measures do not sufficiently capture localization quality. We therefore propose to use the estimated 3D IoU as a localization metric and set category-aware self-adjusted thresholds to filter poorly localized proposals. We adopt VoteNet as our backbone detector on indoor datasets while we use PV-RCNN on the autonomous driving dataset, KITTI. Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios (including fully labeled setting). For example, when training using only 10% labeled data on ScanNet, 3DIoUMatch achieves 7.7 absolute improvement on mAP@0.25 and 8.5 absolute improvement on mAP@0.5 upon the prior art. On KITTI, we are the first to demonstrate semi-supervised 3D object detection and our method surpasses a fully supervised baseline from 1.8% to 7.6% under different label ratio and categories.
more »
« less
- Award ID(s):
- 1763268
- PAR ID:
- 10285234
- Date Published:
- Journal Name:
- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aidong Zhang; Huzefa Rangwala (Ed.)In many scenarios, 1) data streams are generated in real time; 2) labeled data are expensive and only limited labels are available in the beginning; 3) real-world data is not always i.i.d. and data drift over time gradually; 4) the storage of historical streams is limited. This learning setting limits the applicability and availability of many Machine Learning (ML) algorithms. We generalize the learning task under such setting as a semi-supervised drifted stream learning with short lookback problem (SDSL). SDSL imposes two under-addressed challenges on existing methods in semi-supervised learning and continuous learning: 1) robust pseudo-labeling under gradual shifts and 2) anti-forgetting adaptation with short lookback. To tackle these challenges, we propose a principled and generic generation-replay framework to solve SDSL. To achieve robust pseudo-labeling, we develop a novel pseudo-label classification model to leverage supervised knowledge of previously labeled data, unsupervised knowledge of new data, and, structure knowledge of invariant label semantics. To achieve adaptive anti-forgetting model replay, we propose to view the anti-forgetting adaptation task as a flat region search problem. We propose a novel minimax game-based replay objective function to solve the flat region search problem and develop an effective optimization solver. Experimental results demonstrate the effectiveness of the proposed method.more » « less
-
Activity recognition is central to many motion analysis applications ranging from health assessment to gaming. However, the need for obtaining sufficiently large amounts of labeled data has limited the development of personalized activity recognition models. Semi-supervised learning has traditionally been a promising approach in many application domains to alleviate reliance on large amounts of labeled data by learning the label information from a small set of seed labels. Nonetheless, existing approaches perform poorly in highly dynamic settings, such as wearable systems, because some algorithms rely on predefined hyper-parameters or distribution models that needs to be tuned for each user or context. To address these challenges, we introduce LabelForest 1, a novel non-parametric semi-supervised learning framework for activity recognition. LabelForest has two algorithms at its core: (1) a spanning forest algorithm for sample selection and label inference; and (2) a silhouette-based filtering method to finalize label augmentation for machine learning model training. Our thorough analysis on three human activity datasets demonstrate that LabelForest achieves a labeling accuracy of 90.1% in presence of a skewed label distribution in the seed data. Compared to self-training and other sequential learning algorithms, LabelForest achieves up to 56.9% and 175.3% improvement in the accuracy on balanced and unbalanced seed data, respectively.more » « less
-
The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios.more » « less
-
Precise and eloquent label information is fundamental for interpreting the underlying data distributions distinctively and training of supervised and semi-supervised learning models adequately. But obtaining large amount of labeled data demands substantial manual effort. This obligation can be mitigated by acquiring labels of most informative data instances using Active Learning. However labels received from humans are not always reliable and poses the risk of introducing noisy class labels which will degrade the efficacy of a model instead of its improvement. In this paper, we address the problem of annotating sensor data instances of various Activities of Daily Living (ADLs) in smart home context. We exploit the interactions between the users and annotators in terms of relationships spanning across spatial and temporal space which accounts for an activity as well. We propose a novel annotator selection model SocialAnnotator which exploits the interactions between the users and annotators and rank the annotators based on their level of correspondence. We also introduce a novel approach to measure this correspondence distance using the spatial and temporal information of interactions, type of the relationships and activities. We validate our proposed SocialAnnotator framework in smart environments achieving ≈ 84% statistical confidence in data annotationmore » « less