skip to main content

Title: Controlled Molecular Assembly of Tetrazine Derivatives on Surfaces
While self-assembly is relatively well-known and widely used to form hierarchical structures and thin film coatings, controlled assembly is less known and utilized. Our prior work has demonstrated the concept of controlled assembly of macromolecules such as star polymers (MW ~383 kDa, hydrodynamic radius R ~ 13.8 nm) in droplets. The present work extends this concept to smaller molecules, in this case, poly(ethylene glycol) bis-tetrazine (PEG-bisTz, Mn 8.1 kDa, R ~1.5 nm). The key to control molecular assembly is to first deliver ultrasmall volumes (sub-fL) of solution containing PEG-bisTz to a substrate. The solvent evaporates rapidly due to the minute volume, thus forcing the assembly of solute, whose overall size and dimension are dictated by the initial liquid geometry and size. Using pre-patterned surfaces, this work revealed that the initial liquid shape can be further tuned, and as such we could control the final assembly of solute such as PEG-bisTz molecules. The degree of control is demonstrated by varying the micropatterns and delivery conditions. This work demonstrates the validity of controlled assembly for PEG-bisTz, and as such enables 3D nanoprinting of functional materials. The technology has promising applications in nanophotonics, nanoelectronics, nanocomposite materials, and tissue engineering.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Zhang, Xi
Date Published:
Journal Name:
CCS Chemistry
Page Range / eLocation ID:
1789 to 1799
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles. 
    more » « less
  2. Controlling supramolecular self‐assembly in water‐based solutions is an important problem of interdisciplinary character that impacts the development of many functional materials and systems. Significant progress in aqueous self‐assembly and templating has been demonstrated by using lyotropic chromonic liquid crystals (LCLCs) as these materials show spontaneous orientational order caused by unidirectional stacking of plank‐like molecules into elongated aggregates. In this work, it is demonstrated that the alignment direction of chromonic assemblies can be patterned into complex spatially‐varying structures with very high micrometer‐scale precision. The approach uses photoalignment with light beams that exhibit a spatially‐varying direction of light polarization. The state of polarization is imprinted into a layer of photosensitive dye that is protected against dissolution into the LCLC by a liquid crystalline polymer layer. The demonstrated level of control over the spatial orientation of LCLC opens opportunities for engineering materials and devices for optical and biological applications.

    more » « less
  3. Abstract

    Solutions of proteins and other molecules exhibit puzzling, mesoscopically sized inclusions of a solute-rich liquid, well outside the region of stability of the solute-rich phase. This mesoscopic size is in conflict with existing views on heterophase fluctuations. Here we systematically work out a microscopic mechanism by which a metastable solute-rich phase can readily nucleate in a liquid solution. A requisite component of the mechanism is that the solute form long-lived complexes with itself or other molecules. After nucleated in this non-classical fashion, individual droplets grow until becoming mechanically unstable because of a concomitant drop in the internal pressure, the drop caused by the metastability of the solute-rich phase. The ensemble of the droplets is steady-state. In a freshly prepared solution, the ensemble is predicted to evolve in a way similar to the conventional Ostwald ripening, during which larger droplets grow at the expense of smaller droplets.

    more » « less
  4. Non-toxic, chemically inert, organic polymers as polyethylene glycol (PEG) and polyoxymethylene (POM) have versatile applications in basic research, industry and pharmacy. In this work, we aim to characterize the hydration structure of PEG and POM oligomers by exploring how the solute disturbs the water structure compared to the bulk solvent and how the solute chain interacts with the solvent. We explore the effect of (i) the C–C–O (PEG) versus C-O (POM) constitution of the chain and (ii) chain length. To this end, MD simulations followed by clustering and topological analysis of the hydration network, as well as quantum mechanical calculations of atomic charges are used. We show that the hydration varies with chain conformation and length. The degree of folding of the chain impacts its degree of solvation, which is measurable by different parameters as for example the number of water molecules in the first solvation shell and the solvent accessible surface. Atomic charges calculated on the oligomers in gas phase are stable throughout conformation and chain length and seem not to determine solvation. Hydration however induces charge transfer from the solute molecule to the solvent, which depends on the degree of hydration. 
    more » « less
  5. Abstract

    Conventional dialyzer membranes typically comprise of unevenly distributed polydisperse, tortuous, rough pores, embedded in relatively thick ≈20–50 µm polymer layers wherein separation occurs via size exclusion as well as differences in diffusivity of the permeating species. However, transport in such polymeric pores is increasingly hindered as the molecule size approaches the pore dimension, resulting in significant retention of undesirable middle molecules (≥15–60 kDa) and uremic toxins. Enhanced removal of middle molecules is usually accompanied by high albumin loss (≈66 kDa) causing hypoalbuminemia. Here, the scalable bottom‐up fabrication of wafer‐scale carbon nanotube (CNT) membranes with highly aligned, low‐friction, straight‐channels/capillaries and narrow pore‐diameter distributions (≈0.5–4.5 nm) is demonstrated, to overcome persistent challenges in hemofiltration/hemodialysis. Using fluorescein isothiocyanate (FITC)‐Ficoll 70 and albumin in phosphate buffered saline (PBS) as well as in bovine blood plasma, it is shown that CNT membranes can allow for significantly higher hydraulic permeability (more than an order of magnitude when normalized to pore area) than commercial high‐flux hemofiltration/hemodialysis membranes (HF 400), as well as greatly enhance removal of middle molecules while maintaining comparable albumin retention. These findings are rationalized via an N‐pore transport model that highlights the critical role of molecular flexing and deformation during size‐selective transport within nanoscale confinements of the CNTs. The unique transport characteristics of CNTs coupled with size‐exclusion and wafer‐scale fabrication offer transformative advances for hemofiltration, and the obtained insight into molecular transport can aid advancements in several other bio‐systems/applications beyond hemofiltration/hemodialysis.

    more » « less