We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles.
more »
« less
Controlled Molecular Assembly of Tetrazine Derivatives on Surfaces
While self-assembly is relatively well-known and widely used to form hierarchical structures and thin film coatings, controlled assembly is less known and utilized. Our prior work has demonstrated the concept of controlled assembly of macromolecules such as star polymers (MW ~383 kDa, hydrodynamic radius R ~ 13.8 nm) in droplets. The present work extends this concept to smaller molecules, in this case, poly(ethylene glycol) bis-tetrazine (PEG-bisTz, Mn 8.1 kDa, R ~1.5 nm). The key to control molecular assembly is to first deliver ultrasmall volumes (sub-fL) of solution containing PEG-bisTz to a substrate. The solvent evaporates rapidly due to the minute volume, thus forcing the assembly of solute, whose overall size and dimension are dictated by the initial liquid geometry and size. Using pre-patterned surfaces, this work revealed that the initial liquid shape can be further tuned, and as such we could control the final assembly of solute such as PEG-bisTz molecules. The degree of control is demonstrated by varying the micropatterns and delivery conditions. This work demonstrates the validity of controlled assembly for PEG-bisTz, and as such enables 3D nanoprinting of functional materials. The technology has promising applications in nanophotonics, nanoelectronics, nanocomposite materials, and tissue engineering.
more »
« less
- Award ID(s):
- 1808829
- PAR ID:
- 10285372
- Editor(s):
- Zhang, Xi
- Date Published:
- Journal Name:
- CCS Chemistry
- Volume:
- 3
- ISSN:
- 2096-5745
- Page Range / eLocation ID:
- 1789 to 1799
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The constructs of lipid molecules follow self-assembly, driven by intermolecular interactions, forming stacking of lipid bilayer films. Achieving designed geometry at nano- to micro-levels with packing deviating from the near-equilibrium structure is difficult to achieve due to the strong tendency of lipid molecules to self-assemble. Using ultrasmall (more » « less
-
Conjugation with poly(ethylene glycol) (PEG) or PEGylation is a widely used tool to overcome the shortcomings of native proteins, such as poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity. However, PEGylation is often accompanied by an unwanted detrimental effect on bioactivity, particularly, resulting from the amphiphilic nature of PEG. This is especially true for PEGylated proteins with large binding targets. Pegasys, a PEGylated interferon alpha-2a (IFN-α2a) bearing a 40 kDa branched PEG, is a typical example that displays only 7% in vitro activity of the unmodified IFN-α2a. In this work, by employing IFN-α2a as a model protein, we demonstrated that a protein conjugated with zwitterionic polymers (or zwitterlation) could significantly mitigate the antiproliferative bioactivity loss in vitro after polymer conjugation. The retained antiproliferative activity of zwitterlated IFN-α2a is 4.4-fold higher than that of the PEGylated IFN-α2a with the same polymer molecular weight, or 3-fold higher than that of the PEGylated IFN-α2a with a similar hydrodynamic size. It is hypothesized that nonspecific interactions between zwitterionic polymers and IFN-α2a/IFN-α2a receptors can be mitigated due to the super-hydrophilic nature of zwitterionic polymers. This, in turn, reduces the ‘nonspecific blocking’ between IFN-α2a and IFN-α2a receptors. In addition, we demonstrated that zwitterlated IFN-α2a showed a prolonged circulation time and a mitigated accelerated blood clearance after repeated injections in rats.more » « less
-
Abstract Conventional dialyzer membranes typically comprise of unevenly distributed polydisperse, tortuous, rough pores, embedded in relatively thick ≈20–50 µm polymer layers wherein separation occurs via size exclusion as well as differences in diffusivity of the permeating species. However, transport in such polymeric pores is increasingly hindered as the molecule size approaches the pore dimension, resulting in significant retention of undesirable middle molecules (≥15–60 kDa) and uremic toxins. Enhanced removal of middle molecules is usually accompanied by high albumin loss (≈66 kDa) causing hypoalbuminemia. Here, the scalable bottom‐up fabrication of wafer‐scale carbon nanotube (CNT) membranes with highly aligned, low‐friction, straight‐channels/capillaries and narrow pore‐diameter distributions (≈0.5–4.5 nm) is demonstrated, to overcome persistent challenges in hemofiltration/hemodialysis. Using fluorescein isothiocyanate (FITC)‐Ficoll 70 and albumin in phosphate buffered saline (PBS) as well as in bovine blood plasma, it is shown that CNT membranes can allow for significantly higher hydraulic permeability (more than an order of magnitude when normalized to pore area) than commercial high‐flux hemofiltration/hemodialysis membranes (HF 400), as well as greatly enhance removal of middle molecules while maintaining comparable albumin retention. These findings are rationalized via an N‐pore transport model that highlights the critical role of molecular flexing and deformation during size‐selective transport within nanoscale confinements of the CNTs. The unique transport characteristics of CNTs coupled with size‐exclusion and wafer‐scale fabrication offer transformative advances for hemofiltration, and the obtained insight into molecular transport can aid advancements in several other bio‐systems/applications beyond hemofiltration/hemodialysis.more » « less
-
Stimuli-responsive hydrogels that provide controlled degradation can be used as bacteria delivery systems for advanced therapeutic applications. Here, we report the first use of photodegradable hydrogels as materials that can direct bacterial movement, tune mean bacteria speed, and control bacteria delivery through spatiotemporal control of degradation. Hydrogels were formed using base-catalyzed Michael addition reactions between photodegradable poly(ethylene glycol) (PEG) o-nitrobenzyl diacrylate macromers and PEG tetra-thiol cross-linkers within microfluidic channels. Nutrient gradients were generated across the channel, and micron-scale regions of the hydrogel were partially degraded by exposure to controlled doses (2.1–168 mJ/mm^2) of patterned 365 nm light. Hydrogel degradation was then characterized in situ using fluorescence visualization of fluorescein-labeled hydrogels. Following characterization, Bacillus subtilis expressing green fluorescent protein was introduced into the device, and its movement up the nutrient gradient was monitored using time-lapse fluorescence microscopy to enable a systematic study of bacteria chemotaxis through the hydrogels at varied levels of degradation. B. subtilis showed minimal adhesion to partially degraded PEG hydrogels, and bacteria mean speed and mean directional change were tunable according to the level of hydrogel photodegradation, with a 2.6-fold difference in mean cell speed measured across the partially degraded hydrogel regions. Finally, the ability to alter bacteria speed and directionality through tunable degradation and without significant adhesion was used to achieve controlled release profiles of bacteria to delivery sites. These findings advance the use of PEG-based hydrogel materials as delivery vehicles for bacterial therapeutic applications and other living material applications that require controlled bacteria transport.more » « less
An official website of the United States government

