skip to main content

Title: The Iceland Greenland Seas Project
Abstract The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the more » development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Bulletin of the American Meteorological Society
Page Range or eLocation-ID:
1795 to 1817
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientificmore »facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.« less
  2. Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess ) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 ( n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 ( r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recordedmore »the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.« less
  3. In 2020, the Woods Hole Oceanographic Institution (WHOI) celebrates 90 years of research, education, and exploration of the World Ocean. Since inception this has included Arctic studies. In fact, WHOI’s first technical report is on the oceanographic data obtained during the submarine “Nautilus” polar expedition in 1931. In 1951 and 1952, WHOI scientists supervised the collection of hydrographic data during the U.S. Navy SkiJump I & II expeditions utilizing ski-equipped aircraft landings in the Beaufort Sea, and inferred the Beaufort Gyre circulation cell and existence of a mid-Arctic ridge. Later classified studies, particularly concerning under-ice acoustics, were conducted by WHOI personnel from Navy and Air Force ice camps. With the advent of simple satellite communications and positioning, WHOI oceanographers began to deploy buoys on sea ice to obtain surface atmosphere, ice, and upper ocean time series data in the central Arctic beginning in 1987. Observations from these first systems were limited technologically to discrete depths and constrained by power considerations, satellite throughput, as well as high costs. As technologies improved, WHOI developed the drifting Ice-Tethered Profiler (ITP) to obtain vertically continuous upper ocean data several times per day in the ice-covered basins and telemeter the data back in near realmore »time to the lab. Since the 1980s, WHOI scientists have also been involved in geological, biological, ecological and geochemical studies of Arctic waters, typically from expeditions utilizing icebreaking vessels, or air supported drifting platforms. Since the 2000s, WHOI has maintained oceanographic moorings on the Beaufort Shelf and in the deep Canada Basin, the latter an element of the Beaufort Gyre Observing System (BGOS). BGOS maintains oceanographic moorings via icebreaker, and conducts annual hydrographic and geochemical surveys each summer to document the Beaufort Gyre freshwater reservoir that has changed significantly since earlier investigations from the 1950s–1980s. With the experience and results demonstrated over the past decades for furthering Arctic research, WHOI scientists are well positioned to continue to explore and study the polar oceans in the decades ahead« less
  4. Abstract Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupledmore »to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.« less
  5. Abstract Ocean–atmosphere coupling modifies the variability of Earth’s climate over a wide range of time scales. However, attribution of the processes that generate this variability remains an outstanding problem. In this article, air–sea coupling is investigated in an eddy-resolving, medium-complexity, idealized ocean–atmosphere model. The model is run in three configurations: fully coupled, partially coupled (where the effect of the ocean geostrophic velocity on the sea surface temperature field is minimal), and atmosphere-only. A surface boundary layer temperature variance budget analysis computed in the frequency domain is shown to be a powerful tool for studying air–sea interactions, as it differentiates the relative contributions to the variability in the temperature field from each process across a range of time scales (from daily to multidecadal). This method compares terms in the ocean and atmosphere across the different model configurations to infer the underlying mechanisms driving temperature variability. Horizontal advection plays a dominant role in driving temperature variance in both the ocean and the atmosphere, particularly at time scales shorter than annual. At longer time scales, the temperature variance is dominated by strong coupling between atmosphere and ocean. Furthermore, the Ekman transport contribution to the ocean’s horizontal advection is found to underlie the low-frequencymore »behavior in the atmosphere. The ocean geostrophic eddy field is an important driver of ocean variability across all frequencies and is reflected in the atmospheric variability in the western boundary current separation region at longer time scales.« less