Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)The IRIS-HEP software institute, as a contributor to the broader HEP Python ecosystem, is developing scalable analysis infrastructure and software tools to address the upcoming HL-LHC computing challenges with new approaches and paradigms, driven by our vision of what HL-LHC analysis will require. The institute uses a “Grand Challenge” format, constructing a series of increasingly large, complex, and realistic exercises to show the vision of HL-LHC analysis. Recently, the focus has been demonstrating the IRIS-HEP analysis infrastructure at scale and evaluating technology readiness for production. As a part of the Analysis Grand Challenge activities, the institute executed a “200 Gbps Challenge”, aiming to show sustained data rates into the event processing of multiple analysis pipelines. The challenge integrated teams internal and external to the institute, including operations and facilities, analysis software tools, innovative data delivery and management services, and scalable analysis infrastructure. The challenge showcases the prototypes — including software, services, and facilities — built to process around 200 TB of data in both the CMS NanoAOD and ATLAS PHYSLITE data formats with test pipelines. The teams were able to sustain the 200 Gbps target across multiple pipelines. The pipelines focusing on event rate were able to process at over 30 MHz. These target rates are demanding; the activity revealed considerations for future testing at this scale and changes necessary for physicists to work at this scale in the future. The 200 Gbps Challenge has established a baseline on today’s facilities, setting the stage for the next exercise at twice the scale.more » « lessFree, publicly-accessible full text available October 7, 2026
-
The High-Luminosity Large Hadron Collider (HL-LHC) is set to introduce unprecedented data volumes and computational demands, necessitating significant enhancements in the current LHC computing infrastructure. We summarize efforts by the experiments to integrate high-performance computing clusters and public cloud resources into their processing frameworks. We also examine the adoption of cloud technologies for implementation of advanced service infrastructure which are finding applications in Tier 2 centers and prototyping of future analysis facilities. We highlight the crucial role of scalable networking capabilities and challenge exercises to prepare for the expected increased data throughput.more » « less
-
null (Ed.)One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D.more » « less
-
We describe progress on building the SLATE (Services Layer at the Edge) platform. The high level goal of SLATE is to facilitate creation of multi-institutional science computing systems by augmenting the canonical Science DMZ pattern with a generic, "programmable", secure and trusted underlayment platform. This platform permits hosting of advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE uses best-of-breed data center virtualization and containerization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts. As such it will simplify creation of scalable platforms that connect research teams, institutions and resources to accelerate science while reducing operational costs and development cycle times.more » « less
-
SLATE (Services Layer at the Edge) is a new project that, when complete, will implement “cyberinfrastructure as code” by augmenting the canonical Science DMZ pattern with a generic, programmable, secure and trusted underlayment platform. This platform will host advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE will use best-of-breed data center virtualization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts. As such it will simplify creation of scalable platforms that connect research teams, institutions and resources to accelerate science while reducing operational costs and development cycle times. Since SLATE will be designed to require only commodity components for its functional layers, its potential for building distributed systems should extend across all data center types and scales, thus enabling creation of ubiquitous, science-driven cyberinfrastructure. By providing automation and programmatic interfaces to distributed HPC backends and other cyberinfrastructure resources, SLATE will amplify the reach of science gateways and therefore the domain communities they support.more » « less
An official website of the United States government

Full Text Available