skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flat line bundles and the Cappell-Miller torsion in Arakelov geometry
In this paper, we extend Deligne’s functorial Riemann-Roch isomorphism for Hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily unitary connections. The Quillen metric and ?-product of Gillet-Soulé are replaced with complex valued logarithms. On the determinant of cohomology side, we show that the Cappell-Miller torsion is the appropriate counterpart of the Quillen metric. On the Deligne pairing side, the logarithm is a refinement of the intersection connections considered in a previous work. The construction naturally leads to an Arakelov theory for flat line bundles on arithmetic surfaces and produces arithmetic intersection numbers valued in C/πi Z. In this context we prove an arithmetic Riemann-Roch theorem. This realizes a program proposed by Cappell-Miller to show that their holomorphic torsion exhibits properties similar to those of the Quillen metric proved by Bismut, Gillet and Soulé. Finally, we give examples that clarify the kind of invariants that the formalism captures; namely, periods of differential forms.  more » « less
Award ID(s):
1906403
PAR ID:
10286000
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annales scientifiques de lÉcole normale supérieure
Volume:
52
Issue:
5
ISSN:
0012-9593
Page Range / eLocation ID:
1265-1303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work concerns a map φ : R → S \varphi \colon R\to S of commutative noetherian rings, locally of finite flat dimension. It is proved that the André-Quillen homology functors are rigid, namely, if D n ( S / R ; − ) = 0 \mathrm {D}_n(S/R;-)=0 for some n ≥ 1 n\ge 1 , then D i ( S / R ; − ) = 0 \mathrm {D}_i(S/R;-)=0 for all i ≥ 2 i\ge 2 and φ {\varphi } is locally complete intersection. This extends Avramov’s theorem that draws the same conclusion assuming D n ( S / R ; − ) \mathrm {D}_n(S/R;-) vanishes for all n ≫ 0 n\gg 0 , confirming a conjecture of Quillen. The rigidity of André-Quillen functors is deduced from a more general result about the higher cotangent modules which answers a question raised by Avramov and Herzog, and subsumes a conjecture of Vasconcelos that was proved recently by the first author. The new insight leading to these results concerns the equivariance of a map from André-Quillen cohomology to Hochschild cohomology defined using the universal Atiyah class of φ \varphi . 
    more » « less
  2. null (Ed.)
    Abstract We consider holomorphic twists of arbitrary supersymmetric theories in four dimensions. Working in the BV formalism, we rederive classical results characterizing the holomorphic twist of chiral and vector supermultiplets, computing the twist explicitly as a family over the space of nilpotent supercharges in minimal supersymmetry. The BV formalism allows one to work with or without auxiliary fields, according to preference; for chiral superfields, we show that the result of the twist is an identical BV theory, the holomorphic $$\beta \gamma $$ β γ system with superpotential, independent of whether or not auxiliary fields are included. We compute the character of local operators in this holomorphic theory, demonstrating agreement of the free local operators with the usual index of free fields. The local operators with superpotential are computed via a spectral sequence and are shown to agree with functions on a formal mapping space into the derived critical locus of the superpotential. We consider the holomorphic theory on various geometries, including Hopf manifolds and products of arbitrary pairs of Riemann surfaces, and offer some general remarks on dimensional reductions of holomorphic theories along the $$(n-1)$$ ( n - 1 ) -sphere to topological quantum mechanics. We also study an infinite-dimensional enhancement of the flavor symmetry in this example, to a recently studied central extension of the derived holomorphic functions with values in the original Lie algebra, that generalizes the familiar Kac–Moody enhancement in two-dimensional chiral theories. 
    more » « less
  3. null (Ed.)
    A bstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines. 
    more » « less
  4. We prove that the Fubini–Study currents associated to a sequence of singularHermitian holomorphic line bundles on a compact normal Moishezon space distributeasymptotically as the curvature currents of their metrics. 
    more » « less
  5. Let $$X=\mathbb{C}\times\Sigma$$ be the product of the complex plane and a compact Riemann surface. We establish a classification theorem of solutions to the Seiberg-Witten equation on $$X$$ with finite analytic energy. The spin bundle $$S^+\to X$$ splits as $$L^+\oplus L^-$$. When $$2-2g\leq c_1(S^+)[\Sigma]<0$$, the moduli space is in bijection with the moduli space of pairs $$((L^+,\bar{\partial}), f)$$ where $$(L^+,\bar{\partial})$$ is a holomorphic structure on $L^+$ and $$f: \mathbb{C}\to H^0(\Sigma, L^+,\bar{\partial})$$ is a polynomial map. Moreover, the solution has analytic energy $$-4\pi^2d\cdot c_1(S^+)[\Sigma]$$ if $$f$$ has degree $$d$$. When $$c_1(S^+)=0$$, all solutions are reducible and the moduli space is the space of flat connections on $$\bigwedge^2 S^+$$. We also estimate the decay rate at infinity for these solutions. 
    more » « less