Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models.more »
Toward Benchmarking Student Progress in Mechanics: Assessing Learning Cycles through Mastery Learning and Concept Questions
In mechanics, the standard 3-credit, 45-hour course is sufficient to deliver standard lectures with prepared examples and questions. Moreover, it is not only feasible, but preferable, to employ any of a variety of active learning and teaching techniques. Nevertheless, even when active learning is strategically used, students and instructors alike experience pressure to accomplish their respective learning and teaching goals under the constraints of the academic calendar, raising questions as to whether the allocated time is sufficient to enable authentic learning. One way to assess learning progress is to examine the learning cycles through which students attempt, re-think, and re-attempt their work. This article provides data to benchmark the time required to learn key Statics concepts based on results of instruction of approximately 50 students in a Statics class at a public research university during the Fall 2020 semester. Two parallel techniques are employed to foster and understand student learning cycles.
• Through a Mastery Based Learning model, 15 weekly pass/fail “Mastery Tests” are given. Students who do not pass may re-test with a different but similar test on the same topic each week until the semester’s conclusion. The tests are highly structured in that they are well posed and highly more »
- Award ID(s):
- 1821445
- Publication Date:
- NSF-PAR ID:
- 10286226
- Journal Name:
- ASEE Virtual Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models.more »
-
The landscapes of many elementary, middle, and high school math classrooms have undergone major transformations over the last half-century, moving from drill-and-skill work to more conceptual reasoning and hands-on manipulative work. However, if you look at a college level calculus class you are likely to find the main difference is the professor now has a whiteboard marker in hand rather than a piece of chalk. It is possible that some student work may be done on the computer, but much of it contains the same type of repetitive skill building problems. This should seem strange given the advancements in technology that allow more freedom than ever to build connections between different representations of a concept. Several class activities have been developed using a combination of approaches, depending on the topic. Topics covered in the activities include Riemann Sums, Accumulation, Center of Mass, Volumes of Revolution (Discs, Washers, and Shells), and Volumes of Similar Cross-section. All activities use student note outlines that are either done in a whole group interactive-lecture approach, or in a group work inquiry-based approach. Some of the activities use interactive graphs designed on desmos.com and others use physical models that have been designed in OpenSCAD and 3D-printedmore »
-
In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonlymore »
-
In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonlymore »