skip to main content


Title: Probing Saliency in Short Answer Scoring Models for Science Explanations
Recent work on automated scoring of student responses in educational applications has shown gains in human-machine agreement from neural models, particularly recurrent neural networks (RNNs) and pre-trained transformer (PT) models. However, prior research has neglected investigating the reasons for improvement – in particular, whether models achieve gains for the “right” reasons. Through expert analysis of saliency maps, we analyze the extent to which models attribute importance to words and phrases in student responses that align with question rubrics. We focus on responses to questions that are embedded in science units for middle school students accessed via an online classroom system. RNN and PT models were trained to predict an ordinal score from each response’s text, and experts analyzed generated saliency maps for each response. Our analysis shows that RNN and PT-based models can produce substantially different saliency profiles while often predicting the same scores for the same student responses. While there is some indication that PT models are better able to avoid spurious correlations of high frequency words with scores, results indicate that both models focus on learning statistical correlations between scores and words and do not demonstrate an ability to learn key phrases or longer linguistic units corresponding to ideas, which are targeted by question rubrics. These results point to a need for models to better capture student ideas in educational applications.  more » « less
Award ID(s):
1812660
NSF-PAR ID:
10286230
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
New York Academy of Sciences Natural Language, Dialog and Speech Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Models for automated scoring of content in educational applications continue to demonstrate improvements in human-machine agreement, but it remains to be demonstrated that the models achieve gains for the “right” reasons. For providing reliable scoring and feedback, both high accuracy and connecting scoring decisions to scoring rubrics are crucial. We provide a quantitative and qualitative analysis of automated scoring models for science explanations of middle school students in an online learning environment that leverages saliency maps to explore the reasons for individual model score predictions. Our analysis reveals that top-performing models can arrive at the same predictions for very different reasons, and that current model architectures have difficulty detecting ideas in student responses beyond keywords. 
    more » « less
  2. null (Ed.)
    Models for automated scoring of content in educational applications continue to demonstrate improvements in human-machine agreement, but it remains to be demonstrated that the models achieve gains for the “right” reasons. For providing reliable scoring and feedback, both high accuracy and construct coverage are crucial. In this work, we provide an in-depth quantitative and qualitative analysis of automated scoring models for science explanations of middle school students in an online learning environment that leverages saliency maps to explore the reasons for individual model score predictions. Our analysis reveals that top-performing models can arrive at the same predictions for very different reasons, and that current model architectures have difficulty detecting ideas in student responses beyond keywords. 
    more » « less
  3. Social signal processing algorithms have become increasingly better at solving well-defined prediction and estimation problems in audiovisual recordings of group discussion. However, much human behavior and communication is less structured and more subtle. In this paper, we address the problem of generic question answering from diverse audiovisual recordings of human interaction. The goal is to select the correct free-text answer to a free-text question about human interaction in a video. We propose an RNN-based model with two novel ideas: a temporal attention module that highlights key words and phrases in the question and candidate answers, and a consistency measurement module that scores the similarity between the multimodal data, the question, and the candidate answers. This small set of consistency scores forms the input to the final question-answering stage, resulting in a lightweight model. We demonstrate that our model achieves state of the art accuracy on the Social-IQ dataset containing hundreds of videos and question/answer pairs. 
    more » « less
  4. Abstract

    The core concept of genetic information flow was identified in recent calls to improve undergraduate biology education. Previous work shows that students have difficulty differentiating between the three processes of the Central Dogma (CD; replication, transcription, and translation). We built upon this work by developing and applying an analytic coding rubric to 1050 student written responses to a three‐question item about the CD. Each response was previously coded only for correctness using a holistic rubric. Our rubric captures subtleties of student conceptual understanding of each process that previous work has not yet captured at a large scale. Regardless of holistic correctness scores, student responses included five or six distinct ideas. By analyzing common co‐occurring rubric categories in student responses, we found a common pair representing two normative ideas about the molecules produced by each CD process. By applying analytic coding to student responses preinstruction and postinstruction, we found student thinking about the processes involved was most prone to change. The combined strengths of analytic and holistic rubrics allow us to reveal mixed ideas about the CD processes and provide a detailed picture of which conceptual ideas students draw upon when explaining each CD process.

     
    more » « less
  5. null (Ed.)
    Abstract We systematically compared two coding approaches to generate training datasets for machine learning (ML): (i) a holistic approach based on learning progression levels and (ii) a dichotomous, analytic approach of multiple concepts in student reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for undergraduate physiology, each targeting five levels of a developing flux learning progression in an ion context. Human-coded datasets were used to train two ML models: (i) an 8-classification algorithm ensemble implemented in the Constructed Response Classifier (CRC), and (ii) a single classification algorithm implemented in LightSide Researcher’s Workbench. Human coding agreement on approximately 700 student responses per item was high for both approaches with Cohen’s kappas ranging from 0.75 to 0.87 on holistic scoring and from 0.78 to 0.89 on analytic composite scoring. ML model performance varied across items and rubric type. For two items, training sets from both coding approaches produced similarly accurate ML models, with differences in Cohen’s kappa between machine and human scores of 0.002 and 0.041. For the other items, ML models trained with analytic coded responses and used for a composite score, achieved better performance as compared to using holistic scores for training, with increases in Cohen’s kappa of 0.043 and 0.117. These items used a more complex scenario involving movement of two ions. It may be that analytic coding is beneficial to unpacking this additional complexity. 
    more » « less