skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints
Abstract The ability to deploy a planar surface to a desired convex profile can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector.  more » « less
Award ID(s):
1663345
PAR ID:
10286304
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 International Design Engineering Conferences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The ability to deploy a planar surface to a desired convex profile with a simple actuation can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. A system of equations describing the shape of the surface during deployment is developed. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to place joints to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector. 
    more » « less
  2. Abstract Soft deployable structures – unlike conventional piecewise rigid deployables based on hinges and springs – can assume intricate 3‐D shapes, thereby enabling transformative soft robotic and manufacturing technologies. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse problem: fabrication of desired 3D structures requires manufacturing technologies with extensive local actuation and control, and a trial‐and‐error search over a large design space. Both of these shortcomings are addressed by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3‐D shapes by designing the appropriate kirigami cuts and the amount of prestretch (without any local control). Second, a data‐driven physics‐guided framework is formulated that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the “latent” parameter space in an active learning approach. The rapid design procedure is demonstrated via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Experiments and our numerical predictions are found to be in good agreement. 
    more » « less
  3. Abstract Stopping origami in arbitrary fold states can present a challenge for origami-based design. In this paper two categories of kirigami-based models are presented for stopping the fold motion of individual creases using deployable hard stops. These models are transcrease (across a crease) and deploy from a flat sheet. The first category is planar and has behavior similar to a four-bar linkage. The second category is spherical and behaves like a degree-4 origami vertex. These models are based on the zero-thickness assumption of paper and can be applied to origami patterns made from thin materials, limiting the motion of the base origami pattern through self-interference within the original facets. Model parameters are based on a desired fold or dihedral angle, as well as facet dimensions. Examples show model benefits and limitations. 
    more » « less
  4. null (Ed.)
    Abstract This paper presents tools and methods to design cylindrical and conical developable mechanisms from flat, planar patterns. Equations are presented that relate the link lengths and link angles of planar and spherical mechanisms to the dimensions in a flat configuration. These flat patterns can then be formed into curved, developable mechanisms. Guidelines are established to determine if a mechanism described by a flat pattern can exhibit intramobile or extramobile behavior. A developable mechanism can only potentially exhibit intramobile or extramobile behavior if none of the links extend beyond half of the flat pattern. The behavior of a mechanism can change depending on the location of the cut of the flat pattern. Different joint designs are discussed including lamina emergent torsional (LET) joints. Physical examples are presented. 
    more » « less
  5. Structures with deployable and compliant mechanisms are new to the domain of underground geotechnical systems. An anchor with rotationally deploying compliant thin-wall elements has been developed. This paper presents variations of this anchor that are targeted to increase the surface area associated with the anchor. This increased surface area correlates to higher skin friction to better resist tensile forces. The number and sizing of the deployable components, called awns, are investigated. The work presented here includes methods to change the deployment behavior of the awns by changing the shape of the awns and by using functionally graded materials for increased resistance when the anchor is subjected to uplift forces. Test members were fabricated from a combination of flexible and rigid polymers via additive manufacturing. Experimental testing included anchor deployment tests and awn tension tests. For deployment tests, torque was applied to an anchor placed in clear sand. Awn tension tests provided additional information about the deformation of functionally graded awns through isolated testing of the awns. The presented design and experimental methodologies give insights into the behavior of small-scale deployable anchors. 
    more » « less