skip to main content


Title: Don't Yank My Chain: Auditable NF Service Chaining
Auditing is a crucial component of network security practices in organizations with sensitive information such as banks and hospitals. Unfortunately, network function virtualization(NFV) is viewed as incompatible with auditing practices which verify that security functions operate correctly. In this paper, we bring the benefits of NFV to security sensitive environments with the design and implementation of AuditBox. AuditBox not only makes NFV compatible with auditing, but also provides stronger guarantees than traditional auditing procedures. In traditional auditing, administrators test the system for correctness on a schedule, e.g., once per month. In contrast, AuditBox continuously self-monitors for correct behavior, proving runtime guarantees that the system remains in compliance with policy goals. Furthermore, AuditBox remains compatible with traditional auditing practices by providing sampled logs which still allow auditors to inspect system behavior manually. AuditBox achieves its goals by combining trusted execution environments with a lightweight verified routing protocol (VRP). Despite the complexity of service function chain routing policies relative to traditional routing, AuditBox's protocol introduces 72-80% fewer bytes of overhead per packet (in a 5-hop service chain) and provides at 61-67% higher goodput than prior work on VRPs designed for the Internet  more » « less
Award ID(s):
1700521
NSF-PAR ID:
10286349
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21)
Page Range / eLocation ID:
155-173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Networks today increasingly support in-network functionality via network function virtualization (NFV) or similar technologies. Such approaches enable a wide range of functionality to be deployed on behalf of end systems, such as offloading Tor services, enforcing network usage policies on encrypted traffic, or new functionality in 5G. An important open problem with such approaches is auditing. Namely, such services rely on third-party network providers to faithfully deploy and run their functionality as intended, but often have little to no insight as to whether providers do so. To address this problem, prior work provides point solutions such as verifiable routing with per-packet overhead, or audits of security practices; however, these approaches are not flexible---they are limited to auditing a small set of functionality and do not allow trade-offs between auditing coverage and overhead. In this paper, we propose NFAudit, which allows auditing of deployed NFs with a flexible approach where a wide range of important properties can be audited with configurable, low overhead. Our key insight is that the design of simple, composable, and flexible auditing primitives, combined with limited trust (in the form of secure enclaves) can permit a wide range of auditing functionality and configurable---and often low---cost. 
    more » « less
  2. System-on-Chip (SoC) supply chain is widely acknowledged as a major source of security vulnerabilities. Potentially malicious third-party IPs integrated on the same Network-on-Chip (NoC) with the trusted components can lead to security and trust concerns. While secure communication is a well studied problem in computer networks domain, it is not feasible to implement those solutions on resource-constrained SoCs. In this paper, we present a lightweight anonymous routing protocol for communication between IP cores in NoC based SoCs. Our method eliminates the major overhead associated with traditional anonymous routing protocols while ensuring that the desired security goals are met. Experimental results demonstrate that existing security solutions on NoC can introduce significant (1.5X) performance degradation, whereas our approach provides the same security features with minor (4%) impact on performance. 
    more » « less
  3. System auditing is a central concern when investigating and responding to security incidents. Unfortunately, attackers regularly engage in anti-forensic activities after a break-in, covering their tracks from the system logs in order to frustrate the efforts of investigators. While a variety of tamper-evident logging solutions have appeared throughout the industry and the literature, these techniques do not meet the operational and scalability requirements of system-layer audit frameworks. In this work, we introduce Custos, a practical framework for the detection of tampering in system logs. Custos consists of a tamper-evident logging layer and a decentralized auditing protocol. The former enables the verification of log integrity with minimal changes to the underlying logging framework, while the latter enables near real-time detection of log integrity violations within an enterprise-class network. Custos is made practical by the observation that we can decouple the costs of cryptographic log commitments from the act of creating and storing log events, without trading off security, leveraging features of off-the-shelf trusted execution environments. Supporting over one million events per second, we show that Custos' tamper-evident logging protocol is three orders of magnitude (1000×) faster than prior solutions and incurs only between 2% and 7% runtime overhead over insecure logging on intensive workloads. Further, we show that Custos' auditing protocol can detect violations in near real-time even in the presence of a powerful distributed adversary and with minimal (3%) network overhead. Our case study on a real-world APT attack scenario demonstrates that Custos forces anti-forensic attackers into a "lose-lose" situation, where they can either be covert and not tamper with logs (which can be used for forensics), or erase logs but then be detected by Custos. 
    more » « less
  4. A virtual firewall based on Network Function Virtualization (NFV) with Software Defined Networking (SDN) provides high scalability and flexibility for low-cost monitoring of legacy networks by dynamically deploying virtual network appliances rather than traditional hardware-based appliances. However, full utilization of virtual firewalls requires efficient management of computer virtualization resources and on-demand placement of virtual firewalls by steering traffic to the correct routing path using an SDN controller. In this paper, we design P4Guard, a software-based configurable firewall based on a high-level domain-specific language to specify packet processing logic using P4. P4Guard is a protocol-independent and platform-agnostic software-based firewall that can be incorporated into software switches that is highly usable and deployable. We evaluate the efficiency of P4Guard in processing traffic, compared to our previous virtual firewall in NFV. 
    more » « less
  5. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less